_ecture 3:
Probability Models for Sequences

 Probability models
— Equal frequency & independence assumptions

* ‘Background’ models

— Failure of equal frequency assumption
 Neutralist vs selectionist interpretations

— Failure of independence assumption
« Markov models
 Assessing significance of sequence patterns
— Simulations



Probability Models of Sequences

« Sample questions when interpreting genomes:
— Is this sequence a splice site?
— Is this sequence part of the coding region of a gene?
— Are these two sequences evolutionarily related?
— Does this sequence show evidence of selection?

« Computational analysis can’t answer:
— only generates hypotheses
which must ultimately be tested by experiment.
 But hypotheses should

— have some reasonable chance of being correct, and
— carry indication of reliability.



* We use probability models of sequences to address
such questions.

 Not the only approach, but usually the most
powerful, because

— seqs are products of evolutionary process which is itself
probabilistic

— want to detect biological “signal” against “noise” of
background sequence or mutations



Models: simplicity vs complexity

“All models are wrong; some models are useful.”
— George Box

“What is simple is always wrong. What is not is
unusable.” — Paul Valery

“Everything should be made as simple as
possible, but not simpler.” — Albert Einstein (?)

Some disadvantages of complexity:
— computational challenge

— (lack of) interpretability
— overfitting



Basic Probability Theory Concepts

« A sample space S is set of all possible outcomes of a
conceptual, repeatable experiment.

— |S] < oo In most of our examples.
— e.g. S = all possible sequences of a given length.
« Elements of S are called sample points.

— e.g. a particular seq = outcome of “experiment” of extracting seq
of specified type from a genome.

A probability distribution P on S assigns non-neg real
number P(s) to each s €S, such that
2:%68 P(S) =1
(SO0<P(s) <1 Vs)

— Intuitively, P(s) = fraction of times one would get s as result of the
expt, if repeated many times.



A probability space (S,P) Is a sample space S with a
prob dist’n P on S.

* Prob dist’n on S Is sometimes called a probability

model for S, particularly if several dist’ns are being
considered.

— Write models as M,, M,, , probabilities as P(s | M,),
P(s | My).

—e.g.

» M, = prob dist’n for splice site segs,

* M, =prob dist’n for “background” (arbitrary genomic) seqs.



e An event E Is a criterion that 1s true or false for each
seS.

— defines a subset of S (sometimes also denoted E).
— P(E) 1s defined to be Xy iq e P(S)-

« EventsE,, E,, ..., E are mutually exclusive if no
two of them are true for the same point;
—thenP(E;orE, or...orE,) =2, ., P(E).

« IfE;, E,, ..., E, are also exhaustive, 1.e. every s in S
satisfies E; for some I, then X, .. P(E;) = 1.



 For events E and H, the conditional probability of E
given H, Is
P(E|H)= P(Eand H)/P(H)
(= prob that both E and H are true, given H is true)
— undefined if P(H) = 0.
» E and H are (statistically) independent if
P(E) =P(E | H)
(i.e. prob. E is true doesn’t depend on whether H Is true);

or equivalently
P(E and H) = P(E)P(H).




Probabilities on Sequences

« Let S =space of DNA or protein sequences of length n.
Possible assumptions for assigning probabilities to S:

— Equal frequency assumption: All residues are equally probable at
any position;
« P(E") = P(E,") for any two residues r and g,
— where E,) means residue r occurs at position i, then
« Since for fixed i the E, are mutually exclusive and exhaustive,
P(EM) =1/|A|
where A = residue alphabet
P(E,") = 1/20 for proteins, 1/4 for DNA).

— Independence assumption: whether or not a residue occurs at a
given position is independent of residues at other positions.



» Given above assumptions, the probability of the sequence
s =ACGCG

(in the space S of all length 5 sequences) is calculated by
considering 5 events:

— Event 1 is that first nuc is A.  Probability = .25.

— Event 2 isthat 29 nucisC.  Probability = .25.

— Event3isthat3%nucis G.  Probability = .25.

— Event4isthat4 nucis C.  Probability = .25.

— Event5isthat 5" nucis G.  Probability = .25.

By independence assumption, prob of all 5 events occurring
IS the product (.25)° = 1/1024.

Since s Is the only sequence satisfying all 5 conditions, P(s)
= 1/1024.
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» More generally, under equal freg and indep
assumptions,

prob of nuc sequence of lengthn = .25",
prob of protein sequence of length n = .05"

In the space S of length n sequences.
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‘Background’ models

* ‘Average’ model for genome; contrasted
with ‘foreground’ models (for sites & other
regions of interest)

» Whole genome vs non-site
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Genome background models:
Fallure of equal frequency assumption

« For most organisms, the genomic nucleotide
composition is significantly different from .25 for
each nucleotide, e.g.:

— H. influenza .31 A, .19C, .19G, 31T
— P. aeruginosa .17 A, .33 C, .33 G, .17 T
— M. janaschii .34 A, .16 C, .16 G, .34 T
— S. cerevisiae .31 A, .19C, .19G, 31T
— C.elegans .32 A, .18C, .18G, .32 T

— H. sapiens .29 A, .21C, .21 G, .29T
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* Note approximate symmetry: A=T, C=G,
— even though we’re counting nucs on just one strand.
— EXxpect exact equality when counting both strands

 Explanation:

— Although individual biological features may have non-
symmetric composition (local asymmetry),

— usually features are distributed approx randomly w.r.t.
strand,

— so local asymmetries cancel, yielding overall
symmetry.
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Cytosine (C)

Guanine (G)
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General Hypotheses Regarding
Unequal Frequency

» Neutralist hypothesis: mutation bias
— e.g. due to nucleotide pool composition

» Selectionist hypothesis: selection
— selection on (many) particular nucleotides
— selection on mutational bias mechanisms
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Genome background models:
Fallure of independence assumption

Nucleotide Freqgs (C. elegans chr. 1):
A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top - e.g. obs freq

of ApC is .047): (Note “symmetry”!)
Observed Expected (under independence)
A C G T A C G T
A 0.135 0.047 0.051 0.088 0.103 0.057 0.057 0.103
C 0.061 0.035 0.033 0.051 0.057 0.032 0.032 0.058
G 0.063 0.034 0.034 0.047 0.057 0.032 0.032 0.057
T 0.061 0.064 0.061 0.135 0.103 0.058 0.057 0.103

Observed / Expected

A C G T
1.314 0.818 0.885 0.853
1.055 1.075 1.031 0.886
1.106 1.062 1.074 0.818
0.597 1.105 1.056 1.313

HoQOp
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Dinucleotide frequencies

 Underrepresentation of TpA: found in nearly all
genomes;
— reason unknown:
» neutral (mutation patterns)?
» selection?
» Overrepresentation of ApA, TpT, CpC, GpG —also
frequently observed in other organisms.

« Unlike mammalian genomes, no underrepresentation
of CpG iIn C. elegans

— CpG not methylated in C. elegans (or most other non-
vertebrates).
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Dinucleotide Fregs — H. sapiens Chr.21

Nucleotide Fregs:
A 10032226 0.297; T 9962530 0.295
G 6908202 0.204; C 6921020 0.205
Entropy: 1.976 bits

Observed Dinuc Fregs Expected (under independence)
A C G T A C G T

0.099 0.051 0.069 0.078 0.088 0.061 0.061 0.087

0.073 0.052 0.011 0.069 0.061 0.042 0.042 0.060

0.059 0.043 0.052 0.050 0.061 0.042 0.042 0.060

0.066 0.059 0.072 0.0098 0.087 0.060 0.060 0.087

HGQ QP

Observed / Expected
A C G T
.124 0.839 1.139 0.891
.204 1.243 0.260 1.139
.974 1.025 1.245 0.839
.752 0.976 1.204 1.125

H @ Qp
O oRr R
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5-methylcytosine (MC): the ‘5™ base’
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But it does affect
— protein binding, e.g. Spl, EGR1, CTCF

—> effects on gene expression, development, cellular differentiation,
transposon suppression, embryogenesis, imprinting, X-inactivation,

chromatin structure, tumorigenesis

mouse methyltransferase knockouts are embryonic lethal

— mutation rate: ™C is a mutation ‘hotspot’:
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* In mammals methylated C’s (nearly) always occur
as part of a CpG dinucleotide:

5/ nC G 37
3/ G ™C 5’
» But some Cs not in CpGs are methylated, in some
cell types

22



as many as 20-30% of all new single-base mutations In
mammalian genomes may be at CpGs, judging from

— analysis of disease-causing mutations,

— comparison of closely related species

— polymorphism data
As a result, CpGs are substantially underrepresented in
mammalian DNA:

— expected frequency .21 .21 = .044 (in mammalian genomes, G+C
freq is about .42, A+T about .58)

— only see about 1/5 that many.
Conversely, TpGs and CpAs are overrepresented
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Dinucleotide Fregs — H. sapiens Chr.22

Nucleotide Fregs:
A 8745910 0.261; T 8720493 0.261
G 7999585 0.239; C 7997931 0.239
Entropy: 1.999 bits

Observed Dinuc Fregs Expected (under independence)
A C G T A C G T

0.077 0.051 0.075 0.058 0.068 0.062 0.062 0.068

0.077 0.071 0.016 0.075 0.062 0.057 0.057 0.062

0.061 0.057 0.071 0.051 0.062 0.057 0.057 0.062

0.047 0.061 0.077 0.076 0.068 0.062 0.062 0.068

HGQ QP

Observed / Expected
A C G T
.125 0.817 1.205 0.855
.233 1.236 0.285 1.206
.975 0.989 1.237 0.818
.684 0.977 1.233 1.124

H @ Qp
O oRr R
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Genome background models:
Fallure of independence assumption

Nucleotide Freqgs (C. elegans chr. 1):
A 4575132 (.321) ; C 2559048 (.179) ; G 2555862 (.179); T 4582688 (.321)

dinucleotide frequencies (5’ nuc to left, 3’ nuc at top - e.g. obs freq

of ApC is .047): (Note “symmetry”!)
Observed Expected (under independence)
A C G T A C G T
A 0.135 0.047 0.051 0.088 0.103 0.057 0.057 0.103
C 0.061 0.035 0.033 0.051 0.057 0.032 0.032 0.058
G 0.063 0.034 0.034 0.047 0.057 0.032 0.032 0.057
T 0.061 0.064 0.061 0.135 0.103 0.058 0.057 0.103

Observed / Expected

A C G T
1.314 0.818 0.885 0.853
1.055 1.075 1.031 0.886
1.106 1.062 1.074 0.818
0.597 1.105 1.056 1.313

HoQOp
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Conditional probability (in C. elegans) of a given
nucleotide (top) occurring, given the preceding
nucleotide (left)

A C G T
0.421 0.147 0.159 0.274
0.338 0.193 0.185 0.284
0.355 0.190 0.192 0.263
0.191 0.198 0.189 0.421

H Q@ Q P



Markov models

 Such conditional probabilities can be used
to define a first-order Markov model (or
Markov chain model) for background
sequence probabilities:

P(S; S 53+ Sp)
=P(sy) P(s; | 51) P(S3 | S2) + P(Sy[Sq.1)
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 Similarly, one can define an a order-k Markov
model in which the probability of s; Is
conditional on s, = S; ,Si 4

(1.e. the k preceding residues)

 Note that the required number of parameters is
exponential In Kk

* Independence model = order-0 Markov model
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Assessing significance of sequence patterns

* Problem: Is a particular sequence pattern, e.g.
— a match between genomes, or
— a region of a particular composition (e.g. GC-rich)
likely to be “biologically significant”, e.g. indicating
— an evolutionary relationship, or
— a functional feature
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Assessing significance of sequence patterns

e Idea:

— specify a scoring system for patterns of the given type

— find the score distribution 1n negative controls
* 1.€. sequences not expected to contain the biological feature

— Scores occurring 1n real sequence, but not in negative
controls, may have biological significance

* Caveats:
— Control may be mnadequate m quantity / quality

— ‘Biologically significant’ # interpretable
e can’t infer function!!

30



‘Negative control’ sequences

1. real biological ‘background’ sequences known not
to have the feature In question

— 1deal if available — but usually hard to find!

2. simulated sequences

— requires probability model retaining some features of
real sequences

— Quantity: In general, want multiple such sequences
— Quality: 1s the model complex enough?
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Theoretical score distributions

 For simple probability models, can sometimes avoid
simulations by finding a theoretical probability
distribution

— approximate, e.g. Karlin-Altschul for BLAST hits
— orexact

for the scores.

« Alternatively, can fit a theoretical distribution to the
observed scores for simulated data

— Avoids need for large number of simulations

32



Homework 2

» Purpose: Assess significance of HW 1
genomic matches

« Simulate negative controls using two
different background sequence models:
— Order 0 Markov
— Order 1 Markov

» Then find matches (using HW 1 suffix array
method) between real sequence and these
control sequences

— Ideally should do lots of simulations!!
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