Lecture 20

• Parsing genomes with HMMs

Genome biology overview

- Genomes undergo two fundamental processes (both involve copying!):
 - Replication
 - Transcription
- Genomic functional information is in the form of *sites*:
 - Short (~2 ~15 base) sequence segments that bind to an *RNA* or *protein* molecule (the *reader*) to help mediate some function
 - Small size is evolutionarily significant!
 - (there is also information in site *ordering* and *spacing*)

Genome HMMs

- a genome consists of (functionally important) sites within (nonfunctional) background sequence
- can define an HMM that reflects this:
 - one state per site position, for each type of site
 - background state
 - appropriate topology (allowed transitions)
 - emission & transition probs

and use it to get Viterbi parse & posterior probs

HMM for C. elegans 3' Splice Sites

- Complication: sites have *orientation* (top or bottom *strand*)
 - e.g. from transcription direction
- One strategy: analyze 2 strands separately

 problem: resolving conflicts
- Better strategy: *expand model* to allow sites in both orientations, and run on *top strand* only
 - double # site states
 - bottom strand states have
 - complementary emission probs
 - reversed allowed transitions

- # params does not change
- size of WDAG increases, but only by factor of ~2
 - no transitions *between* top & bottom strand states, except for background

cf. WDAG for 3-state HMM length n sequence (lecture 14)

Prokaryotes vs eukaryotes

- Such HMMs are most reliable, & most widely used, for prokaryotic genomes, which usually have
 - high site density, homogeneous background
 - relatively simple spatial relationships among sites
 - often relatively little 'supporting information' such as
 - protein binding & transcript data
 - closely related genomes

- eukaryotic genomes are less suitable:
 - low site density, heterogeneous background
 - complex site spatial relationships (not well captured by Markov transition model)
 - often much supporting info
 - similar genomes to transfer annotations from
 - protein binding / RNASeq & other experimental data
 - in principle, some of this could be incorporated into HMM
 - (expanded symbol alphabet)

Prokaryote genomes

- typically a few MB in size
- up to ~80% protein coding
- typical CDS size ~1 KB
- introns & overlapping CDSs rare
- range of GC contents

ORF analysis

- Translate genome in all 6 reading frames
- In each, find 'open reading frames' starting with ATG (or NTG), ending in stop
- Sort ORFs by (decreasing) length
- Work through sorted list, discarding any ORF that
 - overlaps a longer one, or
 - is 'too short'

- Problems:
 - short CDSs are missed
 - CDSs often have long overlapping fake ORFs on opposite strand
 - poor performance on GC-rich genomes (many long fake ORFs

 Additional information that is present in real coding sequence (but ignored in ORF analysis) – *cf. lectures 4, 10*

- amino acid usage

- synonymous codon bias

• Use this, in a probability model!

Copyright 1999 Access Excellence @ the National Health Museum. All rights reserved

The Genetic Code

Amino Acid	Obs/Exp	1 st codon	2^{nd} codon	3 rd codon	# codons
		base	base	base	
E	1.92	G	A	R	2
K	1.80	А	A	R	2
D	1.62	G	А	Y	2
Μ	1.46	А	Т	G	1
Ν	1.37	А	А	Y	2
F	1.25	Т	Т	Y	2
Q	1.22	С	A	R	2
Ι	1.16	А	Т	Not G	3
А	1.14	G	C	Ν	4
G	1.05	G	G	Ν	4
V	.99	G	Т	Ν	4
Y	.98	Т	A	Y	2
L	.95	C(T)	Т	Ν	6
Т	.88	А	С	Ν	4
W	.79	Т	G	G	1
Р	.74	С	С	Ν	4
S	.73	T(A)	C(G)	Ν	6
Н	.67	С	A	Y	2
R	.53	C(A)	G	N	6
С	.52	Т	G	Y	2

Synonymous codon bias

- In most organisms, the codons for an amino acid are not used with equal frequency
- For many organisms this may reflect differences in translational efficiency & accuracy
 - more highly expressed genes have stronger biases
- For mammals codon usage mainly reflects the GC content of the region in which the gene is found
 - GC content variation probably reflects GC-biased gene conversion

rom Initial sequencing and analysis of the human genome, International Human Genome Sequencing Consortium, Nature 409, 860-92	21 (2001)
$Phe \begin{bmatrix} 171 \text{ UUU} \\ 203 \text{ UUC} \end{bmatrix} AAA 0 = \begin{bmatrix} 147 \text{ UCU} \\ 172 \text{ UCC} \end{bmatrix} AGA 10 = \text{Tyr} \begin{bmatrix} 124 \text{ UAU} \\ 158 \text{ UAC} \end{bmatrix} AUA 1 = \text{Cys} \begin{bmatrix} 99 \text{ UGU} \\ 19 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 119 \text{ UGC} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys} \begin{bmatrix} 1147 \text{ UCU} \\ 1147 \text{ UCU} \end{bmatrix} ACA = \text{Cys}$	V 0 N 30
Leu 73 UUA UAA 8 118 UCA UGA 5 stop 0 UAA UUA 0 stop 0 UGA UCA 125 UUG CAA 6 45 UCG CGA 4 stop 0 UAG CUA 0 Trp 122 UGG CCA	N 0 N 7
$\begin{bmatrix} 127 \text{ CUU} & 7 \text{ AAG } 13 \\ 187 \text{ CUC} & \text{GAG } 0 \end{bmatrix} \begin{bmatrix} 175 \text{ CCU} & 7 \text{ AGG } 11 \\ 197 \text{ CCC} & \text{GGG } 0 \end{bmatrix} \xrightarrow{104} \begin{bmatrix} 104 \text{ CAU} \\ 147 \text{ CAC} \end{bmatrix} \xrightarrow{\text{AUG } 0} \xrightarrow{\text{AUG } 0} \begin{bmatrix} 47 \text{ CGU} & 7 \text{ ACG} \\ 107 \text{ CGC} & \text{GCG} \end{bmatrix}$ Leu	i 9 3 0
$\begin{bmatrix} 69 \text{ CUA} & -\text{ UAG 2} \\ -392 \text{ CUG} & -\text{ CAG 6} \end{bmatrix} \begin{bmatrix} 170 \text{ CCA} & -\text{ UGG 10} \\ -69 \text{ CCG} & -\text{ CGG 4} \end{bmatrix} \begin{bmatrix} 121 \text{ CAA} & -\text{ UUG 11} \\ -343 \text{ CAG} & -\text{ CUG 21} \end{bmatrix} \begin{bmatrix} 63 \text{ CGA} & -\text{ UCG} \\ -115 \text{ CGG} & -\text{ CCG} \end{bmatrix}$; 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0
71 AUA - UAU 5 Met - 221 AUG - CAU 17 Met - 2	5
$\begin{bmatrix} 111 & \text{GUU} & 7 & \text{AAC 20} \\ 146 & \text{GUC} & \text{GAC 0} \end{bmatrix} \begin{bmatrix} 185 & \text{GCU} & 7 & \text{AGC 25} \\ 282 & \text{GCC} & \text{GGC 0} \end{bmatrix} \begin{bmatrix} 230 & \text{GAU} \\ 262 & \text{GAC} \end{bmatrix} \xrightarrow{\text{AUC 0}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} \xrightarrow{\text{ACC}} \begin{bmatrix} 112 & \text{GGU} \\ 230 & \text{GGC} \end{bmatrix} \xrightarrow{\text{ACC}} $	0 : 11
$\begin{bmatrix} 72 \text{ GUA} & - \text{ UAC 5} \\ 288 \text{ GUG} & - \text{ CAC 19} \end{bmatrix} \begin{bmatrix} 160 \text{ GCA} & - \text{ UGC 10} \\ 74 \text{ GCG} & - \text{ CGC 5} \end{bmatrix} \begin{bmatrix} 301 \text{ GAA} & - \text{ UUC 14} \\ 404 \text{ GAG} & - \text{ CUC 8} \end{bmatrix} \begin{bmatrix} 168 \text{ GGA} & - \text{ UCC} \\ 160 \text{ GGG} & - \text{ CCC} \end{bmatrix}$	5

Figure 34 The human genetic code and associated tRNA genes. For each of the 64 codons, we show: the corresponding amino acid; the observed frequency of the codon per 10,000 codons; the codon; predicted wobble pairing to a tRNA anticodon (black lines); an unmodified tRNA anticodon sequence; and the number of tRNA genes found with this anticodon. For example, phenylalanine is encoded by UUU or UUC; UUC is seen more frequently, 203 to 171 occurrences per 10,000 total codons; both codons are expected to be decoded by a single tRNA anticodon. The modified anticodon sequence in the mature tRNA genes found with this anticodon. The modified anticodon sequence in the mature tRNA is not shown, even where post-transcriptional modifications can be confidently predicted (for example, when an A is used to decode a U/C third position, the A is almost certainly an inosine in the mature tRNA). The Figure also does not show the number of distinct tRNA species (such as distinct sequence families) for each anticodon; often there is more than one species for each anticodon.

Prokaryote HMMs

- Main types of sites:
 - Codon sites
 - Translation start sites (Shine-Dalgarno)
 - Promoter elements
 - Transcription factor binding sites
 - (RNA genes / RNA folding sites)
 - (replication origin)

- Simple 7-state prokaryote genome model:
 - 1 state for intergenic regions
 - 3 states for codon positions in top-strand genes
 - 3 for codon positions in bottom-strand genes

Amino Acid	Obs/Exp	1 st codon	2^{nd} codon	3 rd codon	# codons
		base	base	base	
E	1.92	G	А	R	2
K	1.80	А	А	R	2
D	1.62	G	А	Y	2
Μ	1.46	А	Т	G	1
Ν	1.37	А	А	Y	2
F	1.25	Т	Т	Y	2
Q	1.22	С	А	R	2
Ι	1.16	А	Т	Not G	3
А	1.14	G	С	Ν	4
G	1.05	G	G	Ν	4
V	.99	G	Т	Ν	4
Y	.98	Т	А	Y	2
L	.95	C(T)	Т	Ν	6
Т	.88	А	С	Ν	4
W	.79	Т	G	G	1
Р	.74	С	С	N	4
S	.73	T(A)	C(G)	N	6
Н	.67	С	А	Y	2
R	.53	C(A)	G	Ν	6
С	.52	Т	G	Y	2

Average codon biases (lecture 10)

- At codon position 1,
 - purines (A and G) predominate among over-represented amino acids,
 - pyrimidines (*C* and *T*) among under-represented amino acids.
- At codon position 2,
 - -A and T predominate among over-represented amino acids,
 - C and G among under-represented amino acids.
- Hypotheses to explain *RWR* codon preference:
 - (Neutralist) Vestige of ancestral code? (Shepherd)
 - (Selectionist) More efficiently translated?

These biases are somewhat subtle – but strong enough to (often) distinguish – coding sequences (of reasonable length) from

background sequence

7-state model for prokaryote genomes

- intergenic
- first codon position top strand coding sequence
- second codon position top strand coding sequence
- third codon position top strand coding sequence
- first codon position bottom strand coding sequence
- second codon position bottom strand coding sequence
- third codon position bottom strand coding sequence

a (very short!) 'bottom-strand' gene, in a different region of the genome:

• N.B. the emitted symbols are always *top strand* nucleotides!

A better HMM!

- Amino acid-specific codon blocks
 - Not really 'sites' as previously defined may have more than one tRNA reader
 - Split the three 6-codon amino acids into 2 sites (4+2)
 - E.g. Leu: CTN and TTR 'sites'
 - A single YTN site would also emit Phe codons
 - The other 17 aas are each 1 site
- 'Start' codon: NTG

Part of Shine-Dalgarno

- 2 Stop codon sites: TAR, TGA
- Total codon sites: $17 + 3 \times 2 + 1 + 2 = 26$

The Genetic Code

_	U	С	A	G	
υ	Phe	Ser	Tyr	Cys	U
	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Stop	Stop	A
	Leu	Ser	Stop	Trp	G
С	Leu	Pro	His	Arg	U
	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
A	Ile	Thr	Asn	Ser	U
	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	A
	Met	Thr	Lys	Arg	G
G	Val	Ala	Asp	Gly	U
	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G

- Total codon *states*
- = 26 sites $\times 2$ strands $\times 3$ pos = 156
- Transitions within & between codons are the obvious ones
 - Unless one wishes to allow for frameshift sequencing errors!
- Also, states for promoter element sites
 - TF binding sites
- Ignore RNA genes
 - (identify by sequence similarity)
- Ignore replication origins
 - Often can identify after HMM analysis, by orientation
 ²⁸

• Need more than one background state, to allow memory of where one is in a gene, and strand

- May need additional backgd states if promoter element *order* is important
- Role of 'memory' is to *reduce* impact of biologically implausible paths
 - Model may still work without these complications but with reduced power
- Reasonable to constrain all backgd states to have *same emission probs*

- Use Viterbi or Baum-Welch training

 (with appropriate top vs bottom constraints etc)
- to find
 - Codon biases, aa freqs
 - Promoter elements
 - Include sites of size ~6, random initial emission probs
 - Shine-Dalgarno sequence preferences

Complications in Eukaryotes

- 5' & 3' splice sites
- poly A sites
- introns
 - Must retain memory of where codon is interrupted!
- 5' & 3'UTR
- G+C variation

• Not difficult to set up an HMM with states corresponding to the above; *but* complex site spatial relationships are not well captured by Markov transition model:

Intron size constraints

- Enhancers (possibly intronic!)
- Also:
 - alternative splicing
 - alternative promoters
 - overlapping sites
- imply any single parse is incomplete