Lecture 18

1

• PhastCons

PhastCons PhyloHMM

- transition probs imply *a priori* length dist'ns for conserved & non-conserved segments
 - prob(cons seg has length *n*) is

$$(a_{cc})^{n-1}a_{cn} = (a_{cc})^{n-1}(1-a_{cc})$$

- geometric distribution
- expected length (Elen) ω of conserved segment is

$$1.0 / (1 - a_{cc}) = 1.0 / a_{cn}$$

special case: $a_{cc} = .5 = a_{nn} \Rightarrow$ positions are 'independent'

Notation

- $\mu = a_{cn}$, $\omega = 1/\mu$ (expected length of conserved elt)
- $v = a_{nc}$
- expected 'coverage' γ (frac of genome that is conserved):
 - = Elen (cons seg) / (Elen(cons seg) + (Elen(neut seg))
 - $= (1/\mu) / (1/\mu + 1/\nu)$
 - $= \nu / (\mu + \nu)$

TCGCGACATATACGA

 $\mathbf{X} = \mathrm{TTGGGGGCATGTG}$

PhastCons Parameter Estimation

- parameters estimated separately in 1 Mb windows using EM algorithm
 - full maximum likelihood analysis, or
 - constraining some parameters
 - & averaged over genome
- full MLE results don't match biologists' intuition -- too much 'smoothing':
 - fewer, & larger, conserved elements
 - long, apparently non-conserved regions within conserved elements
 - attributed to fact that (prior) geometric length dist'n inappropriate

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Group	Method	Total no. ^a	Ave. len. ^b	Cov. ^c	$CDS \text{ cov.}^{d}$	μ	ν	ω	γ	L_{\min}
vert.	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	-30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	-12.9
	$65\%^{c}$	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	-16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	-22.6
Chown	Mathad	Total no a	Arro lon b	Corre	CDS ages (C frage	$\mathbf{U}(\mathbf{a})$	$ _{ab}$	т
Group	Method	Total no.~	Ave. len.*	Cov	CDS COV.	- UDi	5 mac.~	$\Pi \{ \psi_c \}$	$ \psi_n\rangle$	L_{\min}
vert.	65%	1,157,180	103.5	4.2%	66.1%	0	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%	ó	24.0%		0.854	11.0

Instead: -- impose constraints

- coverage constraint:
 - 65% of coding bases covered by conserved elts
 - (target value based on earlier mouse/human analysis)
- smoothness constraint:
 - PIT (= expected min. amt of phylogenetic info required to predict a conserved element)
 = 9.8 bits
 - (forced to be same for all species groups)

- constraints met by 'tuning' γ and ω (or equivalently transit probs)
 - choose γ and ω ,
 - get ML estimates of other parameters by EM algorithm
 - see whether get desired coverage & PIT
 - if not, adjust γ and ω & redo

- L_{\min} : expected min length of a conserved segment that could appear in a Viterbi path
- at L_{\min} ,

expected loglike of staying in state n

= expected loglike of switching to c & back again, so

$$(L_{\min}+1)\log(1-\nu) + L_{\min}\sum_{x} P(x|\psi_{c})\log P(x|\psi_{n})$$
$$= \log \nu + \log \nu + (L_{e^{-1}}-1)\log(1-\nu) + L_{e^{-1}}\sum_{x} P(x|sh_{c})\log P(x|sh_{c})$$

$$= \log \nu + \log \mu + (L_{\min} - 1) \log(1 - \mu) + L_{\min} \sum_{x} P(x|\boldsymbol{\psi}_{c}) \log P(x|\boldsymbol{\psi}_{c})$$

•
$$L_{\min} = \frac{\log \nu + \log \mu - \log(1 - \nu) - \log(1 - \mu)}{\log(1 - \nu) - \log(1 - \mu) - H(\psi_c ||\psi_n)}$$

• where $H(\psi_c || \psi_n) = \sum_x P(x | \psi_c) \log \frac{P(x | \psi_c)}{P(x | \psi_n)}$ = rel entropy of *c*-state emission prob dist'n w.r.t. *n*-state dist'n

• PIT (phylogenetic information threshold) = $L_{\min}H(\psi_c||\psi_n)$:

= 'expected min amt of phylogenetic info required to predict conserved element'

- Final param estimates (for vertebrates):
 - $-\gamma = 0.265$
 - $-\omega = 12.0 \text{ bp}$
 - $-H(\psi_{\rm c} \parallel \psi_{\rm n}) = .608$ bits / site
 - $-L_{\min} = 16.1 \text{ bp}$
 - $\text{PIT} = L_{\min} H(\psi_c || \psi_n) = 9.8 \text{ bits}$

Group	Method	Total no. ^a	Ave. len. ^b	Cov. ^c	$CDS \text{ cov.}^{d}$	μ	ν	ω	γ	L_{\min}
vert.	MLE	561,103	216.1	4.2%	68.8%	0.018	0.004	55.4	0.191	-30.4
	55%	1,058,855	75.3	2.8%	56.8%	0.125	0.029	8.0	0.187	-12.9
	$65\%^{c}$	1,157,180	103.5	4.2%	66.1%	0.083	0.030	12.0	0.265	-16.0
	75%	1,381,978	167.5	8.1%	76.6%	0.043	0.031	23.0	0.415	-22.6
Chown	Mathad	Total no a	Arro lon b	Corre	CDS ages (C frage	$\mathbf{U}(\mathbf{a})$	$ _{ab}$	т
Group	Method	Total no.~	Ave. len.*	Cov	CDS COV.	- UDi	5 mac.~	$\Pi \{ \psi_c \}$	$ \psi_n\rangle$	L_{\min}
vert.	65%	1,157,180	103.5	4.2%	66.1%	0	18.0%		0.611	16.0
	4d	797,777	109.3	3.0%	64.2%	ó	24.0%		0.854	11.0

Estimating false positive rates

- simulate 1 Mb alignment
 - by sampling 4D sites (with replacement) from aligned CDSs
 - caveat: these not typical of all neutral sites!
- predict cons elts (using prev param estimates)
- frac of bases in cons elts:

Group	65%	75%	MLE
vertebrate	0.00279^{a}	0.00362	0.00005
insect	0.00286	0.01026	0.00152
worm	0.00000	0.00000	0.00000
yeast	0.00006	0.00042	0.00023

- does not address (important) issue of rate of false positive bases within, or flanking, true conserved elements
- also: genes more G+C rich than genome average, & have somewhat higher mutation rate (due in part to more frequent CpGs)

 \Rightarrow *underestimating* false pos rate

• also: randomization procedure destroys underlying mutation rate variation

 \Rightarrow *underestimating* false pos rate

Characteristics of phastCons predicted conserved elements

- 1.18 million elements
- constitute 4.3% of human sequence
 - 66% of coding bases
 - 88% of coding exons overlap predicted elt
 - 23% of 5'UTR bases
 - 63% of exons
 - 18% of 3'UTR bases
 - 64% of exons
 - 42% of RNA gene bases
 - 56% of genes
 - 3.6% of intronic bases
 - 2.7% of intergenic bases
 - < 1% of mammalian 'ancestral repeats' (ARs)

Length dist'ns of conserved elements

- lengths approx. geometrically distributed, avg 104
 bp
- length dist'n depends on annotation category

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

Highly conserved elements (HCEs)

- top 5000 in score; cover 0.14% of human genome – mean length 781 bp (range 318-4922)
- probably a more sensible category to study than 'ultraconserved elements'
- non-randomly distributed with respect to genes
 - overrepresented in or near regulatory (DNA-, RNAbinding) genes, some other classes (e.g. ion channels)
 - overrepresented in 3' UTRs some associated with miRNA binding sites
 - also enriched in 'stable gene deserts'
- enriched for RNA-folding potential
- why long highly conserved regions? clusters of binding sites?

				CDS			5' UTR			3' UTR			Intron		
Term	Description	Nª	exp. ^b	obs. ^c	P ^d	exp.	obs.	Р	exp.	obs.	Р	exp.	obs.	Р	
GO:0003677	DNA binding	1914	164.5	378	1.3e-62	59.4	158	1.5e-33	84.4	221	1.0e-45	28.6	80	5.1e-19	
GO:0030528	transcription regulator activity	1125	96.7	251	1.7e-49	34.9	119	2.4e-34	49.6	140	8.5e-31	16.8	54	6.2e-15	
GO:0007275	development	1746	150.1	266	1.2e-22	54.2	115	1.0e-15	77.0	122	1.1e-07	26.0	47	3.8e-05	
GO:0005216	ion channel activity	334	28.7	79	3.8e-17	10.3	24	1.2e-04	14.7	16	4.0e-01	4.9	2	1.2e-01	
GO:0006333	chromatin assembly/disassembly	153	13.1	47	3.1e-15	4.7	11	8.3e-03	6.7	17	4.2e-04	2.2	2	6.0e-01	
GO:0007399	neurogenesis	384	33.0	82	5.2e-15	11.9	38	2.7e-10	16.9	36	1.7e-05	5.7	15	6.7e-04	
GO:0009887	organogenesis	880	75.6	144	1.0e-14	27.3	67	6.2e-12	38.8	64	5.2e-05	13.1	27	3.0e-04	
GO:0009653	morphogenesis	1099	94.4	169	1.3e-14	34.1	76	2.2e-11	48.5	77	3.1e-05	16.4	34	3.8e-05	
GO:0008066	glutamate receptor activity	38	3.2	19	3.6e-11	1.1	6	1.0e-03	1.6	5	2.5e-02	_	_	_	
GO:0008134	transcription factor binding	251	21.5	54	1.9e-10	7.7	21	3.8e-05	11.0	35	1.5e-09	3.7	10	4.5e-03	
GO:0005515	protein binding	2179	187.3	252	1.4e-07	67.7	98	6.9e-05	96.1	141	8.9e-07	32.5	41	6.7e-02	
GO:0007018	microtubule-based movement	55	4.7	18	3.9e-07	_	_	_	2.4	8	2.6e-03	0.8	2	2.0e-01	
GO:0003723	RNA binding	601	51.6	88	4.2e-07	18.6	26	5.6e-02	26.5	66	5.5e-12	8.9	7	3.2e-01	
GO:0007268	synaptic transmission	240	20.6	44	1.1e-06	7.4	12	7.2e-02	10.5	10	5.1e-01	_	_	_	
GO:0030154	cell differentiation	200	17.1	37	6.4e-06	6.2	17	1.7e-04	8.8	15	3.2e-02	2.9	7	3.1e-02	
GO:0007267	cell-cell signaling	532	45.7	77	3.5e-06	16.5	23	6.9e-02	23.4	24	4.9e-01	7.9	2	1.3e-02	
GO:0016071	mRNA metabolism	188	16.1	35	9.8e-06	5.8	10	6.9e-02	8.2	29	3.7e-09	2.8	3	5.4e-01	
GO:0006397	mRNA processing	170	14.6	30	1.2e-04	5.2	8	1.6e-01	7.5	24	4.5e-07	2.5	3	4.7e-01	
GO:0006512	ubiquitin cycle	542	46.6	69	5.9e-04	16.8	22	1.2e-01	23.9	45	3.4e-05	8.1	3	3.6e-02	

Table 1. Selected gene ontology (GO) categories of vertebrate genes overlapped by highly conserved elements

"Number of genes in background set assigned to category.

^bExpected number of genes overlapped under background distribution. ^cObserved number of genes overlapped.

^dP-value. Values of less than 5e-5 can be considered significant (see Methods).