Lecture 16

• Evolutionary trees

• Tree-based probabilities for aligned sequences

Evolutionary trees

- Binary tree with
 - n_{leaf} *leaf nodes* (observed individuals)

 $- n_{anc}$ ancestral nodes (unobserved)

- Each ancestral node has two descendants ('left' and 'right'); leaves have none
- # edges:
 - # edge *starts* = $2 n_{anc}$
 - # edge $ends = n_{leaf} + n_{anc} 1$ (every node except root)

•
$$\therefore 2 n_{anc} = n_{leaf} + n_{anc} - 1$$

• $n_{anc} = n_{leaf} - 1$, # edges = $2 n_{leaf} - 2$

Nonconserved

Conserved

- Want to compute *probabilities* of observed leaf sequences, given tree
 - Allows discriminating between possible trees
- Requires
 - considering possible sequences at ancestral nodes
 - # grows exponentially in both *n*_{anc} and sequence length !!
 - a probability model for change along edges

Mutational model for tree

- Will assume independent evolution at each sequence position
 - Doesn't allow for context effects (e.g. CpG hotspots!)
- Mutations along an edge *e*:

 $P_e(s / r) =$ prob a residue *r* at beginning of *e* is *s* at end

• 'Background' residue freqs at the root: $P_{root}(r)$

- Simplifying assumptions:
 - (for DNA) $P_e(s^{\wedge} / r^{\wedge}) = P_e(s / r)$
 - (^ = complementary nuc)
 - so each P_e has 6 independent params
 - A *single, reversible, infinitesimal* (~per small time unit) mutation model P_{inf} applies across entire tree
 - $P_e = (P_{inf})^t$ where t = time along e
 - Reversibility implies root can't be uniquely placed
 - This is model assumed by Siepel et al.

Probability calculations on tree

- Given:
 - 1. a set of observed residues at the leaves
 - (a gap-free alignment column of the sequences)
 - 2. $\{P_e(s | r)\}$ and $\{P_{root}(s)\}$
- compute prob of observed residues
- Still exponentially many (in *n_{anc}*) possibilities for ancestral residues!
- But can use dynamic programming on a WDAG

Evolut tree \rightarrow WDAG

- Each *ancestral node* in tree becomes 4 nodes in WDAG
 labelled with the 4 nucs
- *leaf nodes* remain unchanged
 - labelled with observed nuc
- Two nodes in WDAG are connected by an *edge* if corresponding tree nodes are (but reverse direction)
 weight = P_e(s / r) where e = tree edge, r, s = node labels
- 'urnode'
 - unlabelled
 - 4 edges coming from the 4 root nodes
 - weights = $P_{root}(s)$

- Size of WDAG is linear in n_{leaf} - # nodes: $n_{leaf} + 4 n_{anc} + 1$ - # edges: $4 n_{leaf} + 16 (n_{anc} - 1) + 4$
- Edges in tree point *down*; in WDAG, *up* so WDAG 'parents' are *below*

cf. WDAG for 3-state HMM length n sequence (lecture 14)

Prob calcs in HMMs (lecture 15):

For each vertex v, let $f(v) = \sum_{\text{paths } p \text{ ending at } v} \text{weight}(p)$, where weight(p) = product of edge weights in p. Only consider paths starting at 'begin' node.

Compute f(v) by dynam. prog: $f(v) = \sum_i w_i f(v_i)$, where v_i ranges over the parents of v, and w_i = weight of the edge from v_i to v.

Similarly for $b(v) = \sum_{p \text{ beginning at } v} \text{weight}(p)$

The paths *beginning* at *v* are the ones *ending* at *v* in the *reverse* (*or inverted*) *graph*

 $f(v)b(v) = \text{sum of the path weights of all paths$ *through v* $.}$

f(v')wb(v) = sum of the path weights of all paths *through the* edge (v',v)

• Compute overall *probability* of leaf residues (nucleotides) by *dynamic programming* on WDAG:

 Let, for each node v, f(v) = prob of leaf nucs below v (i.e tree-descendants, or WDAGancestors, of v), given v's nuc

 $f_{left}(v) = \text{prob of leaf nucs } below \text{ and to } left$ $f_{right}(v) = \text{prob of leaf nucs } below \text{ and to } right$ then $f(v) = f_{left}(v) f_{right}(v)$

- Compute these values node-by-node, visiting (WDAG-)parents before children:
 - *starting* at leaf nodes (setting f(v) = 1), *ending* at urnode

 $f_{left}(v) = \sum_{left-u} w(u, v) f(u)$ where

- -u ranges over parent nodes to the left
- w(u, v) = weight on edge from u to v
 (= mutation prob from v to u)
- Similarly for $f_{right}(v)$
- $f(v) = f_{left}(v) f_{right}(v)$
 - For v = urnode, view *all* parents as being to 'left' and $f(v) = f_{left}(v)$
- *f*(urnode) = probability of the observed leaf nucs

- a 'forward-backward' calc gives posterior prob of having
 - a particular nuc at an ancestral node, or
 - a particular mutational change along an edge
- can use these as *fractional counts* to estimate *P*'s (EM algorithm)

Probability models & alignments

• Getting the probability model P_e requires a multiple alignment

• But optimal (LLR) scoring for alignment uses P_e : - log((prob of col | P_e model) / (prob of col | background))

• Find P_e , alignment jointly & iteratively (Sankoff): - crude alignment $\rightarrow P_e \rightarrow \text{scores} \rightarrow \text{better alignment etc}$