Lecture 16

- Evolutionary trees
- Tree-based probabilities for aligned sequences

Evolutionary trees

- Binary tree with
- $n_{\text {leaf }}$ leaf nodes (observed individuals)
- $n_{\text {anc }}$ ancestral nodes (unobserved)
- Each ancestral node has two descendants ('left' and 'right'); leaves have none
- \# edges:
- \# edge starts $=2 n_{\text {anc }}$
- \# edge ends $=n_{\text {leaf }}+n_{\text {anc }}-1$ (every node except root)
- $\therefore 2 n_{\text {anc }}=n_{\text {leaf }}+n_{\text {anc }}-1$
- $n_{\text {anc }}=n_{\text {leaf }}-1$, \# edges $=2 n_{\text {leaf }}-2$

Nonconserved

Conserved

- Want to compute probabilities of observed leaf sequences, given tree
- Allows discriminating between possible trees
- Requires
- considering possible sequences at ancestral nodes
- \# grows exponentially in both $n_{a n c}$ and sequence length !!
- a probability model for change along edges

Mutational model for tree

- Will assume independent evolution at each sequence position
- Doesn't allow for context effects (e.g. CpG hotspots!)
- Mutations along an edge e :

$$
P_{e}(s \mid r)=\text { prob a residue } r \text { at beginning of } e \text { is } s
$$

at end

- 'Background' residue freqs at the root: $P_{\text {root }}(r)$
- Simplifying assumptions:
- (for DNA) $P_{e}\left(s^{\wedge} \mid r^{\wedge}\right)=P_{e}(s \mid r)$
- $\left({ }^{\wedge}=\right.$ complementary nuc $)$
- so each P_{e} has 6 independent params
- A single, reversible, infinitesimal (\sim per small time unit) mutation model $P_{i n f}$ applies across entire tree
- $P_{e}=\left(P_{\text {inf }}\right)^{t}$ where $t=$ time along e
- Reversibility implies root can't be uniquely placed
- This is model assumed by Siepel et al.

Probability calculations on tree

- Given:

1. a set of observed residues at the leaves (a gap-free alignment column of the sequences)
2. $\left\{P_{e}(s \mid r)\right\}$ and $\left\{P_{\text {root }}(s)\right\}$
compute prob of observed residues

- Still exponentially many (in $n_{a n c}$) possibilities for ancestral residues!
- But can use dynamic programming on a WDAG

Evolut tree \rightarrow WDAG

- Each ancestral node in tree becomes 4 nodes in WDAG
- labelled with the 4 nucs
- leaf nodes remain unchanged
- labelled with observed nuc
- Two nodes in WDAG are connected by an edge if corresponding tree nodes are (but reverse direction)
- weight $=P_{e}(s \mid r)$ where $e=$ tree edge, $r, s=$ node labels
- 'urnode'
- unlabelled
- 4 edges coming from the 4 root nodes
- weights $=P_{\text {root }}(s)$

- Size of WDAG is linear in $n_{\text {leaf }}$
$-\#$ nodes: $n_{\text {leaf }}+4 n_{\text {anc }}+1$
- \# edges: $4 n_{\text {leaf }}+16\left(n_{\text {anc }}-1\right)+4$
- Edges in tree point down; in WDAG, up
- so WDAG 'parents' are below

cf. WDAG for 3-state HMM length n sequence (lecture 14)

weights are emission probabilities $e_{k}\left(b_{i}\right)$ for $i^{\text {th }}$

$$
b_{i-1}
$$

position $i-1$
b_{i}
position i
b_{i+1}
position $i+1$

Prob calcs in HMMs (lecture 15):

For each vertex v, let $f(v)=\sum_{\text {paths } p \text { ending at } v} \operatorname{weight}(p)$, where weight $(p)=$ product of edge weights in p. Only consider paths starting at 'begin' node.
Compute $f(v)$ by dynam. prog: $\quad f(v)=\sum_{i} w_{i} f\left(v_{i}\right)$, where v_{i} ranges over the parents of v, and $w_{i}=$ weight of the edge from v_{i} to v.

Similarly for $b(v)=\sum_{p \text { beginning at } v} \operatorname{weight}(p)$
The paths beginning at v are the ones ending at v in the reverse (or inverted) graph

$f(v) b(v)=$ sum of the path weights of all paths through v.
$f\left(v^{\prime}\right) w b(v)=$ sum of the path weights of all paths through the edge (v^{\prime}, v)

- Compute overall probability of leaf residues (nucleotides) by dynamic programming on WDAG:
- Let, for each node $v, f(v)=$ prob of leaf nucs below v (i.e tree-descendants, or WDAGancestors, of v), given v 's nuc
$f_{\text {left }}(v)=$ prob of leaf nucs below and to left $f_{\text {right }}(v)=$ prob of leaf nucs below and to right then $f(v)=f_{\text {left }}(v) f_{\text {right }}(v)$
- Compute these values node-by-node, visiting
(WDAG-)parents before children:
- starting at leaf nodes (setting $f(v)=1)$, ending at urnode
$f_{\text {left }}(v)=\sum_{\text {left }-u} w(u, v) f(u) \quad$ where
- u ranges over parent nodes to the left
- $w(u, v)=$ weight on edge from u to v
(= mutation prob from v to u)
Similarly for $f_{\text {right }}(v)$
$f(v)=f_{\text {left }}(v) f_{\text {right }}(v)$
- For $v=$ urnode, view all parents as being to 'left' and $f(v)=$ $f_{\text {left }}(v)$
- $f($ urnode $)=$ probability of the observed leaf nucs
- a 'forward-backward' calc gives posterior prob of having
- a particular nuc at an ancestral node, or
- a particular mutational change along an edge
- can use these as fractional counts to estimate P 's (EM algorithm)

Probability models \& alignments

- Getting the probability model P_{e} requires a multiple alignment
- But optimal (LLR) scoring for alignment uses P_{e} :
$-\log \left(\left(\right.\right.$ prob of col $\mid P_{e}$ model) $/($ prob of col \mid background $\left.)\right)$
- Find P_{e}, alignment jointly \& iteratively (Sankoff):
- crude alignment $\rightarrow P_{e} \rightarrow$ scores \rightarrow better alignment etc

