
Lecture 15

• Forward & forward/backward algorithms

• HMM parameter estimation

– Viterbi training

– Baum-Welch training

1

2

A

1

G

2

C

3

A

i

T

n

... ...

observed symbols

unobserved states

0 0
a1 2

e1
(A)

a2 3

e2
(G) e3

(C) ei
(A) en

(T)

ai i+1
a3 4

a0 1

Hidden Markov Model

3

WDAG for 3-state HMM,

length n sequence

position i position i+1position i-1

weights are emission

probabilities ek(bi) for ith

residue bi weights are transition

probabilities akl

......

bi-1
bi bi+1

e1(bi)

e2(bi)

e3(bi)

a11
a12

a33

a11
e1(bi-1)

4

position i position i+1position i-1

......

Path Weights

e1(bi-1)

a12

a23

e2(bi)

e3(bi+1)

5

• Paths through graph from begin node to end node
correspond to sequences of states

• Product weight along path

= joint probability of state sequence & observed symbol
sequence

• Highest-weight path = highest probability state sequence

• Sum of (product) path weights, over all paths,

= probability of observed sequence

• Sum of (product) path weights over
– all paths going through a particular node, or

– all paths that include a particular edge,

divided by prob of observed sequence,

= posterior probability of that edge or node

6

• use dynamic programming to find

– sum of all product path weights

= “forward algorithm” for probability of observed sequence

– sum of all product path weights through particular

node or particular edge

= “forward/backward algorithm” to find posterior

probabilities

• Now must use product weights and non-log-

transformed probabilities

– because need to add probabilities

7

• In each case, compute successively for each

node (by increasing depth: left to right)

– the sum of the weights of all paths ending at that

node

– N.B. paths are constrained to begin at the begin

node, end at end node!

• In forward/backward algorithm,

– work through all nodes a second time, in opposite

direction

• i.e. in reverse graph – constraining paths to start at end

node

8

w3

w1

w2

v1

v2

v3

v

For each vertex v, let f(v) = paths p ending at vweight(p), where

weight(p) = product of edge weights in p. Only consider paths

starting at ‘begin’ node.

Compute f(v) by dynam. prog: f(v) = iwi f(vi), where

vi ranges over the parents of v, and

wi = weight of the edge from vi to v.

Similarly for b(v) = p beginning at vweight(p)

The paths beginning at v are the ones ending at v in the reverse (or inverted)

graph

9

• Can “invert” any WDAG: create graph with

– same vertices & edge weights

– direction of each edge reversed

– is still acyclic!

• inverted WDAG has same paths (& path

weights), but in reverse direction

– “forward” path in inverted WDAG = “backward”

path in original WDAG (& vice versa)

from lecture 12 :

10

wv’ v

f(v)b(v) = sum of the path weights of all paths through v.

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the

edge (v’,v)

• Work through graph in forward direction:

– compute and store f(v)

• Then work through graph in backward direction:

– compute b(v)

– compute f(v) b(v) and f(v)wb(v) as above, store in

appropriate cumulative sums

– only need to store b(v) until have computed b’s at

next position

• Posterior probability of being in state s at

position i is f(v) b(v) / total sequence prob

– where v is the corresponding graph node
11

Forward/backward algorithm

12

• Numerical issues: multiplying many small values
can cause underflow. Remedies:

– Scale weights to be close to 1 (affects all paths by same
constant factor – which can be multiplied back later); or

– (where possible) use log weights, so can add instead of
multiplying.

– see Rabiner & Tobias Mann links on web page

13

HMM Parameter Estimation
• Parameters = transition & emission probs

– parameter values ↔ probability model

• If unknown, estimate from set of training sequences

• Maximum likelihood (ML) estimation (= choice of

param vals to maximize prob of training data) is

preferred

– optimality properties of ML estimates discussed in

Ewens & Grant

↔ finding maximum value on a multi-dimensional

surface

– Hard problem! Can be many local maxima

14

Parameter estimation when

state sequence is known
• When underlying state sequence for each training sequence

is known,

– e.g.: site model

then ML estimates are given by:

– emission probabilities:

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) .

– transition probabilities:

akl ^ = (# times state k followed by state l) / (# times state k occurs)

– in denominator above, omit occurrence at last position of sequence
(for transition probabilities)

• But include it for emission probs

– can include pseudocounts, to incorporate prior expectations/avoid
small sample overfitting (Bayesian justification)

15

HMM for C. elegans 3’ Splice Sites

A 3276 3516 2313 476 67 757 240 8192 0 3359 2401 2514

C 970 648 664 236 129 1109 6830 0 0 1277 1533 1847

G 593 575 516 144 39 595 12 0 8192 2539 1301 1567

T 3353 3453 4699 7336 7957 5731 1110 0 0 1017 2957 2264

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276

ExonIntron

3’ ss

CONSENSUS W W W T T t C A G r w w

1 2 3 4 5 6 7 8 9 10 11 120

E
m

is
si

o
n

p
ro

b
ab

il
it

ie
s

‘hidden’ states

16

Parameter estimation when

state sequence unknown
• Viterbi training

1. choose starting parameter values

• must be valid probabilities; avoid 0 unless topology dictates

• make them biologically plausible given state interpretation

2. find Viterbi highest weight paths for each sequence

3. estimate new emission and transition probs as above,

assuming the Viterbi state sequence

4. iterate steps 2 and 3 until convergence

– not guaranteed to occur – but nearly always does

5. repeat steps 1 – 4 with other starting values

• choose values with highest total path score

• Viterbi training does not necessarily give ML

estimates, but often are reasonably good

17

18

• Special case of EM (‘expectation-maximization’)

algorithm

• like Viterbi training, but

– uses all paths, each weighted by its probability

rather than just highest probability path.

• sometimes give significantly better results than

Viterbi

– e.g. for PFAM

Baum-Welch training

19

– An edge in the WDAG contributes fractional (or

weighted) counts given by its posterior

probability:

– (*): (all paths p through edge e weight(p)) / (all paths p weight(p))

(Fractional counts are computed using forward-

backward algorithm)

Implementing Baum-Welch

20

wv’ v

f(v)b(v) = sum of the path weights of all paths through v.

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the

edge (v’,v)

21

– Compute new param estimates

• ek(b)^ = (frac. # times symbol b emitted by state k) /

(frac. # times state k occurs)

• akl ^ = (frac. # times state k followed by state l) / (frac.

times state k occurs)
– (In denom,, omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for

appropriate edge type (emission or transition)

22

– New Baum-Welch parameter estimates have

higher likelihood

• general property of EM algorithm

• not true in general for Viterbi training

– Iterate: get series of estimates converging to a

local maximum on likelihood surface

23

Search of parameter space

• ML estimates correspond by definition to global

maximum;

• but there may be many local maxima, and EM or

Viterbi search can get “trapped” in one

• remedies:

– Consider multiple starts (multiple choices for starting

parameters)

– use “reasonable values” to start search (e.g. unlikely

transitions should be given small initial probabilities)

24

– Allow search to “jump” out of local maxima:

• Add “noise” to counts at each iteration; gradually reduce the

amount of noise

• Use Viterbi-like training, but

– sample paths probabilistically

» (in retracing Viterbi path, choose edge at random according to its

prob, rather than taking highest prob parent);

– use “temperature” T to adjust probabilities;

» initially with large T making all probs approximately equal;

» then gradually reduce T

25

Probabilistic Viterbi Backtracking

choose parent vi with probability wi f(vi) / f(v). For large T,

all parents almost equally likely to be chosen; for small T,

strongly favor largest (max) wi f(vi)

w4

w1

w2
w3

v1

v2

v3

v4

v

reset all weights w to w1/T. For large T (>> 1), this makes

distinct w’s relatively close; for small T (<< 1), relatively

far apart

given choice of paths, re-estimate weights; iterate

