Lecture 15

- Forward \& forward/backward algorithms
- HMM parameter estimation
- Viterbi training
- Baum-Welch training

Hidden Markov Model

WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_{k}\left(b_{i}\right)$ for $i^{\text {th }}$

position $i-1$
position i
position $i+1$

Path Weights

position $i-1$
position i
position $i+1$

- Paths through graph from begin node to end node correspond to sequences of states
- Product weight along path
= joint probability of state sequence \& observed symbol sequence
- Highest-weight path $=$ highest probability state sequence
- Sum of (product) path weights, over all paths,
= probability of observed sequence
- Sum of (product) path weights over
- all paths going through a particular node, or
- all paths that include a particular edge, divided by prob of observed sequence,
= posterior probability of that edge or node
- use dynamic programming to find
- sum of all product path weights
= "forward algorithm" for probability of observed sequence
- sum of all product path weights through particular node or particular edge
= "forward/backward algorithm" to find posterior probabilities
- Now must use product weights and non-logtransformed probabilities
- because need to add probabilities
- In each case, compute successively for each node (by increasing depth: left to right)
- the sum of the weights of all paths ending at that node
- N.B. paths are constrained to begin at the begin node, end at end node!
- In forward/backward algorithm,
- work through all nodes a second time, in opposite direction
- i.e. in reverse graph - constraining paths to start at end node

For each vertex v, let $f(v)=\sum_{\text {paths } p \text { ending at } v} v \operatorname{weight}(p)$, where weight $(p)=$ product of edge weights in p. Only consider paths starting at 'begin' node.
Compute $f(v)$ by dynam. prog: $\quad f(v)=\sum_{i} w_{i} f\left(v_{i}\right)$, where v_{i} ranges over the parents of v, and $w_{i}=$ weight of the edge from v_{i} to v.

Similarly for $b(v)=\sum_{p \text { beginning at } v} \operatorname{weight}(p)$
The paths beginning at v are the ones ending at v in the reverse (or inverted) graph

from lecture 12 :

- Can "invert" any WDAG: create graph with
- same vertices \& edge weights
- direction of each edge reversed
- is still acyclic!
- inverted WDAG has same paths (\& path weights), but in reverse direction
- "forward" path in inverted WDAG = "backward" path in original WDAG (\& vice versa)

$f(v) b(v)=$ sum of the path weights of all paths through v.
$f\left(v^{\prime}\right) w b(v)=$ sum of the path weights of all paths through the edge (v ', v)

Forward/backward algorithm

- Work through graph in forward direction:
- compute and store $f(v)$
- Then work through graph in backward direction:
- compute $b(v)$
- compute $f(v) b(v)$ and $f(v) w b(v)$ as above, store in appropriate cumulative sums
- only need to store $b(v)$ until have computed b 's at next position
- Posterior probability of being in state s at position i is $f(v) b(v) /$ total sequence prob
- where v is the corresponding graph node
- Numerical issues: multiplying many small values can cause underflow. Remedies:
- Scale weights to be close to 1 (affects all paths by same constant factor - which can be multiplied back later); or
- (where possible) use log weights, so can add instead of multiplying.
- see Rabiner \& Tobias Mann links on web page

HMM Parameter Estimation

- Parameters $=$ transition $\&$ emission probs
- parameter values \leftrightarrow probability model
- If unknown, estimate from set of training sequences
- Maximum likelihood (ML) estimation (= choice of param vals to maximize prob of training data) is preferred
- optimality properties of ML estimates discussed in Ewens \& Grant
\leftrightarrow finding maximum value on a multi-dimensional surface
- Hard problem! Can be many local maxima

Parameter estimation when

state sequence is known

- When underlying state sequence for each training sequence is known,
- e.g.: site model
then ML estimates are given by:
- emission probabilities:
$e_{k}(b)^{\wedge}=(\#$ times symbol b emitted by state $k) /(\#$ times state k occurs).
- transition probabilities:
$a_{k l} \wedge=(\#$ times state k followed by state $l) /(\#$ times state k occurs)
- in denominator above, omit occurrence at last position of sequence (for transition probabilities)
- But include it for emission probs
- can include pseudocounts, to incorporate prior expectations/avoid small sample overfitting (Bayesian justification)

HMM for C. elegans 3' Splice Sites

Emission
probabilities

| A | 0.400 | 0.429 | 0.282 | 0.058 | 0.008 | 0.092 | 0.029 | 1.000 | 0.000 | 0.410 | 0.293 | 0.307 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 0.118 | 0.079 | 0.081 | 0.029 | 0.016 | 0.135 | 0.834 | 0.000 | 0.000 | 0.156 | 0.187 | 0.225 |
| G | 0.072 | 0.070 | 0.063 | 0.018 | 0.005 | 0.073 | 0.001 | 0.000 | 1.000 | 0.310 | 0.159 | 0.191 |
| T | 0.409 | 0.422 | 0.574 | 0.896 | 0.971 | 0.700 | 0.135 | 0.000 | 0.000 | 0.124 | 0.361 | 0.276 |

Parameter estimation when

state sequence unknown

Viterbi training

1. choose starting parameter values

- must be valid probabilities; avoid 0 unless topology dictates
- make them biologically plausible given state interpretation

2. find Viterbi highest weight paths for each sequence
3. estimate new emission and transition probs as above, assuming the Viterbi state sequence
4. iterate steps 2 and 3 until convergence

- not guaranteed to occur - but nearly always does

5. repeat steps $1-4$ with other starting values

- choose values with highest total path score
- Viterbi training does not necessarily give ML estimates, but often are reasonably good

Baum-Welch training

- Special case of EM ('expectation-maximization') algorithm
- like Viterbi training, but
- uses all paths, each weighted by its probability rather than just highest probability path.
- sometimes give significantly better results than

Viterbi

- e.g. for PFAM

Implementing Baum-Welch

- An edge in the WDAG contributes fractional (or weighted) counts given by its posterior probability:
$-(*): \quad\left(\sum_{\text {all paths } p \text { through edge } e} \operatorname{weight}(p)\right) /\left(\sum_{\text {all paths } p}\right.$ weight $\left.(p)\right)$
(Fractional counts are computed using forwardbackward algorithm)

$f(v) b(v)=$ sum of the path weights of all paths through v.
$f\left(v^{\prime}\right) w b(v)=$ sum of the path weights of all paths through the edge (v ', v)
- Compute new param estimates
- $e_{k}(b)^{\wedge}=($ frac. \# times symbol b emitted by state k) / (frac. \# times state k occurs)
- $a_{k l} \wedge=($ frac. \# times state k followed by state l) / (frac. \# times state k occurs)
- (In denom,, omit frac counts at last position of sequence)
where "frac. \# times" is given by (*) for appropriate edge type (emission or transition)
- New Baum-Welch parameter estimates have higher likelihood
- general property of EM algorithm
- not true in general for Viterbi training
- Iterate: get series of estimates converging to a local maximum on likelihood surface

Search of parameter space

- ML estimates correspond by definition to global maximum;
- but there may be many local maxima, and EM or Viterbi search can get "trapped" in one
- remedies:
- Consider multiple starts (multiple choices for starting parameters)
- use "reasonable values" to start search (e.g. unlikely transitions should be given small initial probabilities)
- Allow search to "jump" out of local maxima:
- Add "noise" to counts at each iteration; gradually reduce the amount of noise
- Use Viterbi-like training, but
- sample paths probabilistically
» (in retracing Viterbi path, choose edge at random according to its prob, rather than taking highest prob parent);
- use "temperature" T to adjust probabilities;
» initially with large T making all probs approximately equal;
» then gradually reduce T

Probabilistic Viterbi Backtracking

reset all weights w to $w^{1 / T}$. For large $\mathrm{T}(\gg 1)$, this makes distinct w 's relatively close; for small $\mathrm{T}(\ll 1)$, relatively far apart

choose parent v_{i} with probability $w_{i} f\left(v_{i}\right) / f(v)$. For large T, all parents almost equally likely to be chosen; for small T, strongly favor largest (max) $w_{i} f\left(v_{i}\right)$
given choice of paths, re-estimate weights; iterate

