
Lecture 15

• Forward & forward/backward algorithms

• HMM parameter estimation

– Viterbi training

– Baum-Welch training
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WDAG for 3-state HMM, 
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• Paths through graph from begin node to end node 
correspond to sequences of states

• Product weight along path 

= joint probability of state sequence & observed symbol 
sequence

• Highest-weight path = highest probability state sequence

• Sum of (product) path weights, over all paths, 

= probability of observed sequence

• Sum of (product) path weights over 
– all paths going through a particular node, or 

– all paths that include a particular edge, 

divided by prob of observed sequence, 

= posterior probability of that edge or node
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• use dynamic programming to find

– sum of all product path weights 

= “forward algorithm” for probability of observed sequence

– sum of all product path weights through particular 

node or particular edge 

= “forward/backward algorithm” to find posterior 

probabilities

• Now must use product weights and non-log-

transformed probabilities

– because need to add probabilities
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• In each case, compute successively for each 

node (by increasing depth:  left to right)

– the sum of the weights of all paths ending at that 

node 

– N.B. paths are constrained to begin at the begin 

node, end at end node!

• In forward/backward algorithm, 

– work through all nodes a second time, in opposite 

direction

• i.e. in reverse graph – constraining paths to start at end 

node
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For each vertex v, let f(v) = paths p ending at vweight(p), where 

weight(p) = product of edge weights in p. Only consider paths 

starting at ‘begin’ node.

Compute f(v) by dynam. prog:       f(v) = iwi f(vi), where                  

vi ranges over the parents of v, and                                                      

wi = weight of the edge from vi to v.

Similarly for b(v) = p beginning at vweight(p) 

The paths beginning at v are the ones ending at v in the reverse (or inverted) 

graph
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• Can “invert” any WDAG: create graph with 

– same vertices & edge weights

– direction of each edge reversed 

– is still acyclic!

• inverted WDAG has same paths (& path 

weights), but in reverse direction

– “forward” path in inverted WDAG = “backward” 

path in original WDAG (& vice versa)

from lecture 12 :
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wv’ v

f(v)b(v) = sum of the path weights of all paths through v. 

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v)



• Work through graph in forward direction: 

– compute and store f(v)

• Then work through graph in backward direction:

– compute b(v)

– compute f(v) b(v) and f(v)wb(v)  as above, store in 

appropriate cumulative sums

– only need to store b(v) until have computed b’s at 

next position

• Posterior probability of being in state s at 

position i is f(v) b(v) / total sequence prob 

– where v is the corresponding graph node
11

Forward/backward algorithm
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• Numerical issues: multiplying many small values 
can cause underflow. Remedies:

– Scale weights to be close to 1 (affects all paths by same 
constant factor – which can be multiplied back later); or

– (where possible) use log weights, so can add instead of 
multiplying.

– see Rabiner & Tobias Mann links on web page 
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HMM Parameter Estimation
• Parameters = transition & emission probs

– parameter values ↔ probability model

• If unknown, estimate from set of training sequences

• Maximum likelihood (ML) estimation (= choice of 

param vals to maximize prob of training data) is 

preferred

– optimality properties of ML estimates discussed in 

Ewens & Grant

↔ finding maximum value on a multi-dimensional   

surface

– Hard problem! Can be many local maxima
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Parameter estimation when 

state sequence is known
• When underlying state sequence for each training sequence 

is known, 

– e.g.: site model

then ML estimates are given by:

– emission probabilities: 

ek(b)^ = (# times symbol b emitted by state k) / (# times state k occurs) . 

– transition probabilities: 

akl ^ = (# times state k followed by state l) / (# times state k occurs)

– in denominator above, omit occurrence at last position of sequence 
(for transition probabilities)

• But include it for emission probs

– can include pseudocounts, to incorporate prior expectations/avoid 
small sample overfitting (Bayesian justification) 
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HMM for C. elegans 3’ Splice Sites  

 

A  3276  3516  2313   476    67   757   240  8192     0  3359  2401  2514  

C   970   648   664   236   129  1109  6830     0     0  1277  1533  1847  

G   593   575   516   144    39   595    12     0  8192  2539  1301  1567  

T  3353  3453  4699  7336  7957  5731  1110     0     0  1017  2957  2264  

 

 

A 0.400 0.429 0.282 0.058 0.008 0.092 0.029 1.000 0.000 0.410 0.293 0.307  

C 0.118 0.079 0.081 0.029 0.016 0.135 0.834 0.000 0.000 0.156 0.187 0.225  

G 0.072 0.070 0.063 0.018 0.005 0.073 0.001 0.000 1.000 0.310 0.159 0.191  

T 0.409 0.422 0.574 0.896 0.971 0.700 0.135 0.000 0.000 0.124 0.361 0.276  
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Parameter estimation when 

state sequence unknown
• Viterbi training

1. choose starting parameter values

• must be valid probabilities; avoid 0 unless topology dictates

• make them biologically plausible given state interpretation

2. find Viterbi highest weight paths for each sequence

3. estimate new emission and transition probs as above, 

assuming the Viterbi state sequence 

4. iterate steps 2 and 3 until convergence 

– not guaranteed to occur – but nearly always does

5. repeat steps 1 – 4 with other starting values

• choose values with highest total path score



• Viterbi training does not necessarily give ML 

estimates, but often are reasonably good 
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• Special case of EM (‘expectation-maximization’) 

algorithm 

• like Viterbi training, but 

– uses all paths, each weighted by its probability 

rather than just highest probability path. 

• sometimes give significantly better results than 

Viterbi 

– e.g. for PFAM

Baum-Welch training
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– An edge in the WDAG contributes fractional (or

weighted) counts given by its posterior 

probability: 

– (*):    (all paths p through edge e weight(p)) / (all paths p weight(p)) 

(Fractional counts are computed using forward-

backward algorithm)

Implementing Baum-Welch
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wv’ v

f(v)b(v) = sum of the path weights of all paths through v. 

f(v’)
f(v) b(v)

f(v’)wb(v) = sum of the path weights of all paths through the 

edge (v’,v)
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– Compute new param estimates

• ek(b)^ = (frac. # times symbol b emitted by state k) / 

(frac. # times state k occurs) 

• akl ^ = (frac. # times state k followed by state l) / (frac. 

# times state k occurs) 
– (In denom,, omit frac counts at last position of sequence)

where “frac. # times” is given by (*) for 

appropriate edge type (emission or transition)
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– New Baum-Welch parameter estimates have 

higher likelihood 

• general property of EM algorithm 

• not true in general for Viterbi training

– Iterate: get series of estimates converging to a 

local maximum on likelihood surface
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Search of parameter space

• ML estimates correspond by definition to global

maximum; 

• but there may be many local maxima, and EM or 

Viterbi search can get “trapped” in one

• remedies: 

– Consider multiple starts (multiple choices for starting 

parameters) 

– use “reasonable values” to start search (e.g. unlikely 

transitions should be given small initial probabilities)
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– Allow search to “jump” out of local maxima:

• Add “noise” to counts at each iteration; gradually reduce the 

amount of noise

• Use Viterbi-like training, but 

– sample paths probabilistically 

» (in retracing Viterbi path, choose edge at random according to its 

prob, rather than taking highest prob parent); 

– use “temperature” T to adjust probabilities; 

» initially with large T making all probs approximately equal; 

» then gradually reduce T 
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Probabilistic Viterbi Backtracking

choose parent vi with probability wi f(vi) / f(v). For large T, 

all parents almost equally likely to be chosen; for small T, 

strongly favor largest (max) wi f(vi)

w4

w1

w2
w3

v1

v2

v3

v4

v

reset all weights w to w1/T. For large T ( >> 1), this makes 

distinct w’s relatively close; for small T (<< 1), relatively 

far apart

given choice of paths, re-estimate weights; iterate


