Lecture 14

- HMM probability calculations
- WDAG
- Viterbi algorithm
- 2-state HMMs \& D-segments

Hidden Markov Model

HMM Probabilities of Sequences

- Prob of sequence of states $\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n}$ is
$a_{0 \pi_{1}} a_{\pi_{1} \pi_{2}} a_{\pi_{2} \pi_{3}} a_{\pi_{3} \pi_{4}} \ldots a_{\pi_{n-1} \pi_{n}}$.
- Prob of seq of observed symbols $b_{1} b_{2} b_{3} \ldots b_{n}$,
conditional on state sequence is $e_{\pi_{1}}\left(b_{1}\right) e_{\pi_{2}}\left(b_{2}\right) e_{\pi_{3}}\left(b_{3}\right) \ldots e_{\pi_{n}}\left(b_{n}\right)$
- Joint probability $=a_{0 \pi_{1}} \prod_{i=1}^{n} a_{\pi_{i} \pi_{i+1}} e_{\pi_{i}}\left(b_{i}\right)$ (define $a_{\pi_{n} \pi_{n+1}}$ to be 1)
- (Unconditional) prob of observed sequence = sum (of joint probs) over all possible state paths
- not practical to compute directly, by 'brute force'! We will use dynamic programming.

Computing HMM Probabilities

- WDAG structure for sequence HMMs:
- for $i^{\text {th }}$ position in seq $(i=1, \ldots n)$, have 2 nodes for each state:
- total \# nodes $=2 n s+2$, where $n=$ seq length, $s=\#$ states
- Pair of nodes for a given state at $i^{\text {th }}$ position is connected by an emission edge
- Weight is the emission prob for $i^{\text {th }^{\text {h }} \text { observed residue }}$
- Can omit node pair if emission prob $=0$
- Have transition edges connecting (right-hand) state nodes at position i with (left-hand) state nodes at position $i+1$
- Weights are transition probs
- Can omit edges with transition prob $=0$

WDAG for 3-state HMM, length n sequence

weights are emission probabilities $e_{k}\left(b_{i}\right)$ for $i^{\text {th }}$

position $i-1$
position i
position $i+1$

Beginning of Graph

End of graph is similar - but with edges going to the end state

- Paths through graph from begin node to end node correspond to sequences of states
- Product weight along path
= joint probability of state sequence \& observed symbol sequence
- Highest-weight path $=$ highest probability state sequence
- Sum of (product) path weights, over all paths,
= probability of observed sequence
- Sum of (product) path weights over
- all paths going through a particular node, or
- all paths that include a particular edge, divided by prob of observed sequence,
= posterior probability of that edge or node

Path Weights

position $i-1$
position i
position $i+1$

- By general results on WDAGs, can use dynamic programming to find highest weight path:
= "Viterbi algorithm" to find highest probability path (most probable "parse")
- in this case can use log probabilities \& sum weights
- (N.B. paths are constrained to begin at the begin node, and end at the end node!)

The Viterbi path is
 the most probable parse!

Complexity

$\cdot=O(|V|+|E|)$, i.e. total \# nodes and edges.

- $\#$ nodes $=2 n s+2$
- where $n=$ sequence length,
$-s=\#$ states.
- \# edges $=(n-1) s^{2}+n s+2 s$
- So overall complexity is $O\left(n s^{2}\right)$
- (actually s^{2} can be reduced to \#'allowed' transitions between states - depends on model topology).

b_{1}
begin state position 1
b_{2}
position 2
b_{3}
position 3

2-state HMMs \& D-segments

from lecture 13

from lecture 12

- $O(N)$ algorithm to find all maximal D-segs:

```
cumul \(=\max =0 ;\) start \(=1\);
for ( \(\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{N} ; \mathrm{i}++\) ) \(\{\)
    cumul += s[i];
    if (cumul \(\geq\) max)
        \(\{\max =\) cumul; end \(=\mathrm{i} ;\}\)
    if \((\) cumul \(\leq 0\) or cumul \(\leq \max +\mathrm{D}\) or \(\mathrm{i}=\mathrm{N})\{\)
    if ( \(\max \geq \mathrm{S}\) )
        \{print start, end, max; \}
        \(\max =\) cumul \(=0 ;\) start \(=\) end \(=\mathrm{i}+1 ; / *\) NO BACKTRACKING
        NEEDED! */
    \}
\}
```


D-segments ≈ 2-state HMMs

- Consider 2-state HMM
- states $1 \& 2$, transition probs $a_{11}, a_{12}, a_{21}, a_{22}$
- observed symbols $\{r\}$, emission probs $\left\{e_{1}(r)\right\},\left\{e_{2}(r)\right\}$
- Define

$$
\begin{aligned}
& \text { scores } \mathrm{s}(\mathrm{r})=\log \left(e_{2}(r) a_{22} /\left(e_{1}(r) a_{11}\right)\right) \\
& \mathrm{S}=-\mathrm{D}=\log \left(a_{11} a_{22} /\left(a_{21} a_{12}\right)\right)
\end{aligned}
$$

- Then if $S>0$, the maximal D-segments in a sequence $\left(r_{i}\right)_{i=1, n}$ are the state- 2 segments in the Viterbi parse
- (can allow for non-. 5 initiation probs by starting cumul at non-zero value)

D-segments vs HMMs

- D-segments
- are very easy to program!
- give Viterbi parse in just one pass through the sequence
- somewhat more flexible (S, D settings)
- HMMs
- allow more powerful parameter estimation
- can attach probabilities to alternative decompositions
- easily generalize to > 2 types of segments- just allow more states

