Lecture 13

- Hidden Markov Models
- Intro \& Definitions
- Examples

Hidden Markov Models

- Probability models for sequences of observed symbols, e.g.
- nucleotide or amino acid residues
- aligned pairs of residues
- aligned set of residues corresponding to leaves of an underlying evolutionary tree
- angles in protein chain (structure modelling)
- sounds (speech recognition)
- Assume a sequence of "hidden" (unobserved) states underlies each observed symbol sequence
- Each state "emits" symbols (one symbol at a time)
- States may correspond to underlying "reality" we are trying to infer, e.g.
- unobserved biological feature:
- (positions within) a site
- rate of evolution
- protein structural element
- speech phoneme

Advantages of HMMs

- Flexible - gives reasonably good models in wide variety of situations
- Computationally efficient
- Often interpretable:
- hidden states can correspond to biological features.
- can find most probable sequence of hidden states
= biological "parsing" of residue sequence.

HMMs: Formal Definition

- Alphabet $\mathfrak{B}=\{b\}$ of observed symbols
- Set $S=\{k\}$ of hidden states (usually $k=0,1,2 \ldots, m ; 0$ is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by
transition probabilities $\left(a_{k l}\right): a_{k l}=\operatorname{Prob}($ next state is $l \mid$ curr state is k) $\sum_{l} a_{k l}=1$, for each k.
- Usually, many transition probabilities are set to 0 .
- Model topology is the \# of states, and allowed (i.e. $a_{k l} \neq 0$) transitions.
Sometimes omit begin state, in which case need initiation probabilities $\left(p_{k}\right)$ for sequence starting in a given state

from lecture 3:

- Conditional probabilities (as on the previous slide) can be used to define a first-order Markov model (or Markov chain model) for sequence probabilities:
$P\left(s_{1} s_{2} s_{3} \cdots s_{n}\right)$
$\equiv P\left(s_{1}\right) P\left(s_{2} \mid s_{1}\right) P\left(s_{3} \mid s_{2}\right) \cdots P\left(s_{n} \mid s_{n-1}\right)$

- Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by
emission probabilities:
$e_{k}(b)=\operatorname{Prob}$ (observed symbol is $b \mid$ curr state is k)
(begin and end states do not emit symbols)
- Note that
- there are no direct dependencies between observed symbols in the sequence, however
- there are indirect dependencies implied by state dependencies

Where do the parameters come from?

Can either

- define parameter values a priori, or
- estimate them from training data (observed sequences of the type to be modelled).
Usually one does a mixture of both -
- model topology is defined (some transitions set to 0), but
- remaining parameters estimated

Hidden Markov Model

HMM examples: 1-state HMMs

- single state, emitting residues with specified freqs:
= 'background' model

HMM examples: site models

- "states" correspond to positions (columns in the tables). state i transitions only to state $i+1$:
$-a_{i, i+1}=1$ for all i;
- all other $a_{i j}$ are 0
- emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions

HMM for C. elegans 3' Splice Sites

Emission
probabilities

| A | 0.400 | 0.429 | 0.282 | 0.058 | 0.008 | 0.092 | 0.029 | 1.000 | 0.000 | 0.410 | 0.293 | 0.307 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C | 0.118 | 0.079 | 0.081 | 0.029 | 0.016 | 0.135 | 0.834 | 0.000 | 0.000 | 0.156 | 0.187 | 0.225 |
| G | 0.072 | 0.070 | 0.063 | 0.018 | 0.005 | 0.073 | 0.001 | 0.000 | 1.000 | 0.310 | 0.159 | 0.191 |
| T | 0.409 | 0.422 | 0.574 | 0.896 | 0.971 | 0.700 | 0.135 | 0.000 | 0.000 | 0.124 | 0.361 | 0.276 |

Expanded site models

- Can expand site models to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities then no longer necessarily 1 or 0

Insertions \& Deletions in Site Model

insertion state

other transitions correspond
to deletions

HMM examples (in Durbin et al.)

- protein families (like site models - but important to allow insertions \& deletions)
- Pair HMMs
- protein structure (symbols emitted are structural elements)

HMM examples: 2-state HMMs

- if a_{11} and a_{22} are small (close to 0), and

$$
a_{12} \text { and } a_{21} \text { are large (close to } 1 \text {), }
$$

then get (nearly) periodic model with period 2 ; e.g.

- dinucleotide repeat in DNA, or
- (some) beta strands in proteins.
- if a_{11} and a_{22} large, and a_{12} and a_{21} small, then get models of alternating regions of different compositions (specified by emission probabilities), e.g.
- higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
- hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).
Closely related to D-segment method (lecture 12)!
$\begin{array}{llllllllllll}\text { A } & \text { A } & \text { T } & \text { G } & \text { C } & \text { C } & \text { T } & \text { G } & \text { G } & \text { A } & \text { T } & \text { A }\end{array}$

A + T-rich state

HMM examples: Markov models

- Ordinary Markov chain model:
- states $=$ observed symbols
- emission probs $=1$ or 0
- transition probs $=$ prob of observing a symbol, given the preceding one.
- Order k Markov model
- states $=$ length k words (e.g. $b_{1} b_{2} \ldots b_{k}$)
- (unique) symbol emitted by $b_{1} b_{2} \ldots b_{k}$ is b_{k}
- transition prob from $b_{1} b_{2} \ldots b_{k}$ to $c_{1} c_{2} \ldots c_{k}$ is non-zero only if
- $c_{1} c_{2} \ldots c_{k-1}=b_{2} b_{3} \ldots b_{k}$, in which case it is

$$
\mathrm{P}\left(b_{k+1} \mid b_{1} b_{2} \ldots b_{k}\right) \text { where } b_{k+1}=c_{k}
$$

from lecture 3:

- Similarly, one can define an a order-k Markov model in which the probability of s_{i} is conditional on $s_{i-k} \cdots s_{i-2} s_{i-1}$
(i.e. the k preceding residues)
- Note that the required number of parameters is exponential in k
- The independence model (which is usually good enough for us!) = the order-0 Markov model

