Lecture 13

- Hidden Markov Models
 - Intro & Definitions
 - Examples

Hidden Markov Models

- Probability models for sequences of *observed symbols*, e.g.
 - nucleotide or amino acid residues
 - aligned pairs of residues
 - aligned set of residues corresponding to leaves of an underlying evolutionary tree
 - angles in protein chain (structure modelling)
 - sounds (speech recognition)

- Assume a sequence of "hidden" (unobserved) states underlies each observed symbol sequence
- Each state "emits" symbols (one symbol at a time)
- States may correspond to underlying "reality" we are trying to infer, e.g.
 - unobserved biological feature:
 - (positions within) a site
 - rate of evolution
 - protein structural element
 - speech phoneme

Advantages of HMMs

- Flexible gives reasonably good models in wide variety of situations
- Computationally efficient
- Often interpretable:
 - hidden states can correspond to biological features.
 - can find most probable sequence of hidden states
 - = biological "parsing" of residue sequence.

HMMs: Formal Definition

- Alphabet $\mathcal{B} = \{b\}$ of *observed symbols*
- Set $S = \{k\}$ of *hidden states* (usually k = 0,1, 2 ..., m; 0 is reserved for "begin" state, and sometimes also an "end" state)
- (Markov chain property): prob of state occurring at given position depends only on immediately preceding state, and is given by

transition probabilities (a_{kl}) : $a_{kl} = \text{Prob}(\text{next state is } l \mid \text{curr state is } k)$ $\sum_{l} a_{kl} = 1$, for each k.

- Usually, many transition probabilities are set to 0.
- Model *topology* is the # of states, and *allowed* (i.e. $a_{kl} \neq 0$) transitions.

Sometimes omit begin state, in which case need *initiation probabilities* (p_k) for sequence starting in a given state

from lecture 3:

• Conditional probabilities (as on the previous slide) can be used to define a *first-order Markov model* (or *Markov chain model*) for sequence probabilities:

$$P(s_1 \, s_2 \, s_3 \, \cdots \, s_n)$$

$$\equiv P(s_1) \, P(s_2 \, / \, s_1) \, P(s_3 \, / \, s_2) \, \cdots \, P(s_n \, / \, s_{n-1})$$

• Prob that symbol occurs at given sequence position depends only on hidden state at that position, and is given by

emission probabilities:

```
e_k(b) = Prob(observed symbol is b \mid curr state is k) (begin and end states do not emit symbols)
```

Note that

- there are no *direct* dependencies between observed symbols in the sequence, however
- there are *indirect* dependencies implied by state dependencies

Where do the parameters come from?

- Can either
 - define parameter values a priori, or
 - estimate them from training data (observed sequences of the type to be modelled).
- Usually one does a mixture of both
 - model topology is defined (some transitions set to 0),
 but
 - remaining parameters estimated

Hidden Markov Model

HMM examples: 1-state HMMs

- single state, emitting residues with specified freqs:
 - = 'background' model

HMM examples: site models

- "states" correspond to positions (columns in the tables). state i transitions only to state i+1:
 - $-a_{i,i+1} = 1$ for all *i*;
 - all other a_{ij} are 0
- emission probabilities are position-specific frequencies: values in frequency table columns

Topology for Site HMM: 'allowed' transitions

$$0 \longrightarrow 1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7 \longrightarrow 8 \longrightarrow 9 \longrightarrow 10 \longrightarrow 11 \longrightarrow 12 \longrightarrow$$

HMM for C. elegans 3' Splice Sites

Expanded site models

- Can expand site models to allow omission of nuc at some positions by including other (downstream) transitions (or via "silent states")
- Can allow insertions by including additional states.
- transition probabilities then no longer necessarily 1 or 0

Insertions & Deletions in Site Model

insertion state

other transitions correspond to deletions

HMM examples (in Durbin et al.)

- protein families (like site models but important to allow insertions & deletions)
- Pair HMMs
- protein structure (symbols emitted are structural elements)

HMM examples: 2-state HMMs

- if a_{11} and a_{22} are small (close to 0), and a_{12} and a_{21} are large (close to 1), then get (nearly) periodic model with period 2; e.g.
 - dinucleotide repeat in DNA, or
 - (some) beta strands in proteins.
- if a_{11} and a_{22} large, and a_{12} and a_{21} small,
 - then get models of alternating regions of different compositions (specified by emission probabilities), e.g.
 - higher vs. lower G+C content regions (RNA genes in thermophilic bacteria); or
 - hydrophobic vs. hydrophilic regions of proteins (e.g. transmembrane domains).

Closely related to D-segment method (lecture 12)!

A A T G C C T G G A T A

G+C-rich state

A+T-rich state

HMM examples: Markov models

- Ordinary Markov chain model:
 - states = observed symbols
 - emission probs = 1 or 0
 - transition probs = prob of observing a symbol, given the preceding one.
- Order k Markov model
 - states = length k words (e.g. $b_1b_2 \dots b_k$)
 - (unique) symbol emitted by $b_1b_2 \dots b_k$ is b_k
 - transition prob from $b_1b_2 \dots b_k$ to $c_1c_2 \dots c_k$ is non-zero only if
 - $c_1c_2 ... c_{k-1} = b_2b_3 ... b_k$, in which case it is $P(b_{k+1}|b_1b_2 ... b_k)$ where $b_{k+1}=c_k$

from lecture 3:

- Similarly, one can define an a *order-k Markov model* in which the probability of s_i is conditional on $s_{i-k} \cdots s_{i-2} s_{i-1}$ (i.e. the k preceding residues)
- Note that the required number of parameters is exponential in *k*
- The *independence model* (which is usually good enough for us!) = the *order-0 Markov model*