Lecture 12

- More on WDAGs:
- Inverted WDAGs, fwd/backwd algorithm
- Finding multiple high-scoring paths
- Multiple paths in edit graphs
- Internal repeats
- Multiple paths in WLLs
- "D-segments"

Inverted WDAGs

- Can "invert" any WDAG: create graph with
- same vertices \& edge weights
- direction of each edge reversed
- is still acyclic!
- inverted WDAG has same paths (\& path weights), but in reverse direction
- "forward" path in inverted WDAG = "backward" path in original WDAG (\& vice versa)

Forward/backward algorithm

- Order vertices $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ with parents preceding children.
- Reverse order $\left(v_{n}, v_{n-l}, \ldots, v_{1}\right)$ has parents before children in inverted graph
- (Forward direction) Find $w(v)$
$=$ highest weight of all paths ending at v in original (non-inverted) graph
- (Backward direction) Using inverted graph, find $w^{\prime}(v)$
$=$ highest weight of all paths ending at v in inverted graph
$=$ highest weight of all paths beginning at v in original graph
- joining path ending at v, to path beginning at v (in original graph),
see that $w(v)+w^{\prime}(v)=$ highest weight of any path going through v.

Finding multiple high-scoring paths

- If high-weight paths are important, we'll want more than one!
- But not slight perturbations of highest-weight path
- 'Brute force’ algorithm:
- Find highest-weight path
- 'Mask it' (remove its edges from graph)
- Repeat above two steps until scores 'uninteresting'
< some threshold value S
- can be $O\left(N^{2}\right)$, but often acceptable

Improving on 'brute force' by graph reduction

- Use forwd/backwd to find $w(v), w^{\prime}(v)$
- Eliminate $\mathrm{v}\left(\&\right.$ all its edges) if $w(v)+w^{\prime}(v)<\mathrm{S}$
- Eliminate all edges into v if $w(v) \leq 0$
- Eliminate all edges out of v if $w^{\prime}(v) \leq 0$
- Remaining graph is often much smaller \& splits into 'connected components' which can be processed separately
$-v, v^{\prime}$ in same c.c. if a chain of edges connected them
- But no guarantee that $<O\left(N^{2}\right)$
- Is there an $O(N)$ algorithm?
- Yes, for WLLs (Ruzzo \& Tompa)

Finding (imperfect) internal repeats

- Search edit graph of sequence against itself
- i.e. the same sequence labels columns and rows above (\& not including) the main diagonal:
- if include main diagonal, best path will be identity match to self
- complexity = $O\left(N^{2}\right)$ where $N=$ sequence length.

Graph for finding imperfect internal repeats:

- Find short tandem repeats (e.g. microsatellites, minisatellites):
- scan a band just above main diagonal.
- Complexity $=O(k N)$ where k is width of the band.
- Manageable even for large N, if k small.

Graph for finding short tandem repeats:

ACACACACACACACAC AСАСАСАСАСАСАСАС

Finding multiple high-scoring segments in WLLs

- A (locally-)maximal(-scoring) segment I is one such that
$-P 1$: no subsegment of I has a higher score than I
$-P 2$: no segment properly containing I satisfies P1
- Example:

score $=75$, but does not satisfy P1

- Highest weight path via dynamic programming (no explicit

 graph):in (pseudo-)pseudocode:

```
cumul = max = 0; start = 1;
for (i=1; i \leq N; i++) {
        cumul += s[i];
        if (cumul \leq0)
            {cumul = 0; start = i + 1;} /* NOTE RESET TO ZERO */
        else if (cumul \geq max)
            {max = cumul; best_end = i; best_start = start; }
}
if (max \geqS) print best_start, best_end, max
```

- Correspondence to (implicit) WLL
- i labels edges
- cumul $=\mathrm{w}(\mathrm{v})($ where v is vertex at end of edge i$)$
- max = best $\mathrm{w}(\mathrm{v})$ so far
- best_end $=\mathrm{i}$ corresponding to edge ending at best $\mathrm{w}(\mathrm{v})$ so far
- start $=$ edge following $B(v)$

Maximal segments - from cumulative score plot

(without 0 resets)

- Can find all maximal segs of score $\geq S$ using following practical (but non-optimal) algorithm:

```
cumul = max = 0; start = 1;
for (i = 1; i < N; i++) {
    cumul += s[i];
    if (cumul \geq max)
        {max = cumul; end = i;}
    if (cumul }\leq0\mathrm{ or i == N) {
        if (max }\geq\mathrm{ S)
            {print start, end, max; i = end; } /* N.B. MUST BACKTRACK! */
        max = cumul = 0; start = end = i + 1;
    }
}
```


- In worst case this is $O\left(N^{2}\right)$ (because of backtracking),
- but in practice usually $O(N)$ because a given base is usually traversed only a few times
- Ruzzo-Tompa algorithm guarantees $O(N)$
- Basic idea:
- keep list of potential high-scoring segments
- modify as new local maxima/minima encountered
- report them when confirmed (at end of a region)
- An undesirable aspect of maximal segments as defined:
- single maximal seg may contain two (or more) highscoring regions, separated by significant negativescoring regions
- i.e. two possibly biologically distinct target occurrences get merged into one maximal segment
- Example:

A better problem!

- to avoid this, have max allowed 'dropoff' D < 0
- D-segment is segment without any subsegments of score < D
- maximal D-segment is D-segment I such that
- Pl: no subsegment of I has higher score than I
- P2: no D-segment properly containing I satisfies P1
- Problem: given $S(\geq-\mathrm{D})$, find all maximal D-segs of score $\geq S$
- (algorithm fails if $S<-$ D)

Maximal D-segments

- $O(N)$ algorithm to find all maximal D-segs:

```
cumul \(=\max =0 ;\) start \(=1\);
for ( \(\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{N} ; \mathrm{i}++\) ) \(\{\)
    cumul += s[i];
    if (cumul \(\geq\) max)
        \(\{\max =\) cumul; end \(=\mathrm{i} ;\}\)
    if \((\) cumul \(\leq 0\) or cumul \(\leq \max +\mathrm{D}\) or \(\mathrm{i}=\mathrm{N})\{\)
    if ( \(\max \geq \mathrm{S}\) )
        \{print start, end, max; \}
        \(\max =\) cumul \(=0 ;\) start \(=\) end \(=\mathrm{i}+1 ; / *\) NO BACKTRACKING
        NEEDED! */
    \}
\}
```

- So more biologically relevant problem is also computationally simpler!
- what are appropriate S and D?
- mainly an empirical question (based on known examples); altho
- interpretation via 2-state HMM can be useful
- Karlin-Altschul theory tells when they are 'statistically significant'

D-Segments

- Powerful tool for analyzing 'linear' data
- Single sequences (incl. motifs, numerical data)
- Fixed alignment
- Strengths:
- Very simple to program
- Very fast, even for mammalian genomes
- Main limitation:
- Only allows two types of segments ('target' and 'background')
- Essentially a generalization of 2-state HMMs
- multi-state HMMs are more flexible

CNVs \& Read Depth

- $\mathrm{CNV}=$ 'copy number variant' - e.g. region that is single copy in reference sequence but duplicated in sample
- One way to detect: map reads from sample onto reference, look for regions of atypical coverage depth
> 'Single-copy' in sample and reference

multi-copy in sample

HW 6: finding CNVs using D-segments

- data: next-gen read alignments to genome
- observed symbols: counts of \# read starts at each position $(0,1,2, \geq 3)$
- frequencies from Poisson dist'n with appropriate mean
- target regions: heterozygous duplications
- One chrom = reference allele, other is dup
- Poisson mean $=1.5 \mathrm{X}$ background mean

