Lecture 12

- More on WDAGs:
 - Inverted WDAGs, fwd/backwd algorithm
 - Finding *multiple* high-scoring paths
- Multiple paths in edit graphs
 - Internal repeats
- Multiple paths in WLLs
- "D-segments"

Inverted WDAGs

- Can "invert" any WDAG: create graph with
 - same vertices & edge weights
 - direction of each edge reversed
 - is still acyclic!
- inverted WDAG has same paths (& path weights), but in reverse direction
 - "forward" path in inverted WDAG = "backward" path in original WDAG (& vice versa)

Forward/backward algorithm

- Order vertices $(v_1, v_2, ..., v_n)$ with parents preceding children.
 - Reverse order $(v_n, v_{n-1}, ..., v_1)$ has parents before children in *inverted* graph
- (Forward direction) Find w(v)
 - = highest weight of all paths ending at *v* in *original* (non-inverted) graph
- (Backward direction) Using inverted graph, find w'(v)
 = highest weight of all paths ending at v in *inverted* graph
 = highest weight of all paths *beginning* at v in *original* graph
- joining path ending at *v*, to path beginning at *v* (in *original* graph),

see that w(v) + w'(v) = highest weight of any path going *through v*.

Finding *multiple* high-scoring paths

- If high-weight paths are important, we'll want more than one!
 - But not slight perturbations of highest-weight path
- 'Brute force' algorithm:
 - Find highest-weight path
 - 'Mask it' (remove its edges from graph)
 - Repeat above two steps until scores 'uninteresting'
 < some threshold value S
 - can be $O(N^2)$, but often acceptable

Improving on 'brute force' by graph reduction

- Use forwd/backwd to find w(v), w'(v)
- Eliminate v (& all its edges) if w(v) + w'(v) < S
- Eliminate all edges into *v* if $w(v) \le 0$
- Eliminate all edges out of *v* if $w'(v) \le 0$
- Remaining graph is often much smaller & splits into 'connected components' which can be processed separately

-v, v' in same c.c. if a chain of edges connected them

• *But* no guarantee that $< O(N^2)$

Is there an O(N) algorithm?
Yes, for WLLs (Ruzzo & Tompa)

Finding (imperfect) internal repeats

- Search edit graph of *sequence against itself*
 - i.e. the same sequence labels columns and rows

above (& not including) the main diagonal:

- if include main diagonal, best path will be identity match to self
- complexity = $O(N^2)$ where N = sequence length.

Graph for finding imperfect internal repeats:

- Find *short tandem repeats* (e.g. microsatellites, minisatellites):
 - scan a *band* just above main diagonal.
 - Complexity = O(kN) where k is width of the band.
 - Manageable even for large *N*, if *k* small.

Graph for finding short tandem repeats:

ACACACACACACAC ACACACACACACACAC

Finding multiple high-scoring segments in WLLs

- A (*locally-*)*maximal*(*-scoring*) *segment* I is one such that
 - -P1: no subsegment of I has a higher score than I
 - P2: no segment properly containing I satisfies P1
- Example:

score = 75, but does not satisfy *P1*

• *Highest weight path* via dynamic programming (no explicit graph):

```
in (pseudo-)pseudocode:

cumul = max = 0; start = 1;
for (i = 1; i \le N; i++) {

cumul += s[i];
if (cumul \le 0)

\{cumul = 0; start = i + 1;\} /* NOTE RESET TO ZERO */
else if (cumul \ge max)

\{max = cumul; best_end = i; best_start = start;\}
}

if (max \ge S) print best_start, best_end, max
```

- Correspondence to (implicit) WLL
 - i labels *edges*
 - cumul = w(v) (where v is vertex at end of edge i)
 - max = best w(v) so far
 - best_end = i corresponding to edge ending at best w(v) so far
 - start = edge following B(v)

Maximal segments – from cumulative score plot (without 0 resets)

• Can find *all* maximal segs of score \geq S using following practical (but *non-optimal*) algorithm: cumul = max = 0; start = 1;for $(i = 1; i \le N; i++)$ cumul += s[i];if (cumul \geq max) $\{\max = \operatorname{cumul}; \operatorname{end} = i;\}$ if (cumul ≤ 0 or i == N) { if $(\max \ge S)$ {print start, end, max; i = end; } /* N.B. MUST BACKTRACK! */ max = cumul = 0; start = end = i + 1;

1st maximal segment

2^d maximal segment

- In worst case this is O(N²) (because of backtracking),
 - but in practice usually O(N) because a given base is usually traversed only a few times
- Ruzzo-Tompa algorithm *guarantees O(N)* – Basic idea:
 - keep list of *potential* high-scoring segments – modify as new local maxima/minima encountered
 - report them when confirmed (at end of a region)

- An undesirable aspect of maximal segments as defined:
 - single maximal seg may contain *two* (or more) highscoring regions, separated by significant negativescoring regions
 - i.e. two possibly biologically distinct target occurrences get merged into one maximal segment

• Example:

A better problem!

- to avoid this, have max allowed 'dropoff' D
 < 0
- *D-segment* is segment without any subsegments of score < D
- *maximal D-segment* is D-segment I such that
 - *P1*: no subsegment of I has higher score than I
 - P2: no D-segment properly containing I satisfies P1
- Problem: given $S (\geq -D)$, find all maximal D-segs of score $\geq S$
 - (algorithm fails if S < -D)

Maximal D-segments


```
O(N) algorithm to find all maximal D-segs:
 cumul = max = 0; start = 1;
 for (i = 1; i \le N; i++)
      cumul += s[i];
      if (cumul \geq max)
           \{\max = \operatorname{cumul}; \operatorname{end} = i;\}
      if (\text{cumul} \le 0 \text{ or cumul} \le \text{max} + D \text{ or } i == N) {
          if (\max \ge S)
             {print start, end, max; }
           max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING
             NEEDED! */
```

- So more biologically relevant problem is also computationally simpler!
- what are appropriate S and D?
 - mainly an empirical question (based on known examples); altho
 - interpretation via 2-state HMM can be useful
 - Karlin-Altschul theory tells when they are 'statistically significant'

D-Segments

- Powerful tool for analyzing 'linear' data
 - Single sequences (incl. motifs, numerical data)
 - Fixed alignment
- Strengths:
 - Very simple to program
 - Very fast, even for mammalian genomes
- Main limitation:
 - Only allows two types of segments ('target' and 'background')
 - Essentially a generalization of 2-state HMMs
 - multi-state HMMs are more flexible

CNVs & Read Depth

- CNV = 'copy number variant'- e.g. region that is single copy in reference sequence but duplicated in sample
- One way to detect: map reads from sample onto reference, look for regions of atypical coverage depth

HW 6: finding CNVs using D-segments

- *data*: next-gen read alignments to genome
- observed symbols: *counts* of # *read starts* at each position $(0, 1, 2, \ge 3)$
 - *frequencies* from **Poisson dist'n** with appropriate mean
- target regions: *heterozygous duplications*
 - One chrom = reference allele, other is dup
 - Poisson mean = 1.5 X background mean