## Lecture 11

- Indel penalties
- Word nucleation algorithms
- BLAST
- Genome alignment


Above path corresponds to following alignment (w/ lower case letters considered unaligned):

$$
\begin{aligned}
& \text { aCGTTGAATGAccca } \\
& \text { gCAT-GAC-GA }
\end{aligned}
$$

## Gap Penalties

## TNAVAHVD-----DMPNAL YEAAIQLQVTGVVVTDATL

- Usual scoring scheme assigns same penalty $g$ to each gap edge, so
- weights on extended gaps of size $s$ are linear in $s$, i.e.
- total gap penalty $\operatorname{gap}(s)=s \times g$.
- e.g. in above example, if each $g=-6$, total penalty on gap would be

$$
\operatorname{gap}(5)=5 \times-6=-30
$$

- Would like more flexible gap penalties:
- In proteins, insertions \& deletions are rare;
- but when occur, often consist of several residues, because
- they are in regions (loops) tolerant of length changes
- at DNA level, indels in protein coding sequence usually a multiple of 3 nucleotides
- otherwise, would change reading frame
- In noncoding DNA sequence,
- the most common indel size is 1
- but larger indels occur much more frequently than multiple independent single-base indels
- Can allow arbitrary convex gap penalties
- $\operatorname{gap}(s+t) \geq \operatorname{gap}(s)+g a p(t)$, where $s$ and $t$ are (integer) gap sizes by extending edit graph:
- add edges corresponding to arbitrary length gaps from each vertex to each horizontally or vertically downstream vertex
- (convexity condition prevents favoring two adjacent short gaps over a single long gap).
Time complexity now $O(M N(M+N))$
- often unacceptable for moderate $M, N$.
- Also: how to choose appropriate weights? (need data to estimate!)



## Affine Gap Penalties

- Affine gap penalties:
- less general than arbitrary convex penalties, but
- more general than linear penalties.
- Two parameters:
- gap opening penalty $g_{o}$
- gap extension penalty $g_{e}$
- $\operatorname{gap}(n)$ (penalty for size $n$ gap) is then

$$
g_{o}+n g_{e}=g_{i}+(n-1) g_{e}
$$

where the gap initiating penalty $g_{i}=g_{o}+g_{e}$

- Example: for BLOSUM62, good penalties are
$-g_{i}=-12$,
$-g_{e}=-2$
These perform much better than linear penalty - (e.g. $g=-6$ )
- N.B. Durbin et al. reverse $g_{i}$ and $g_{o}$ $-g_{i}$ is called the 'gap opening' penalty
- Can obtain affine penalties using extension of edit graph, retaining complexity $O(M N)$ :


## Edit Graph for Affine Gap Penalties

Double \# vertices, creating left-right pair in place of each original vertex. Each cell looks like this:


- gap-opening edges from left vertex to right vertex of each pair : weight $g_{o}$
- gap extension edges going horizontally or vertically between right vertices : weight $g_{e}$
- diagonal edges originate from either left or right vertex, but always go to a left vertex.
- Paths in the augmented graph still correspond to alignments
- can $\exists$ more than one path for same alignment
- but highest scoring paths still give best alignments
- Score assigned to size $n$ gap is $g_{o}+n g_{e}$
- i.e. affine penalty
- 'Smith-Waterman-Gotoh algorithm'


## Finding values for gap penalties

- Direct definition as LLR seems problematic
- what are 'random alignments'?
- Empirical approach: Given a score matrix (e.g. BLOSUM62), for various ( $g_{o}, g_{e}$ ) choices
- Align real sequences to known homologues \& simulated sequences
- Measure score discrimination (E-values of homologue alignments)
- Find $\left(g_{o}, g_{e}\right)$ giving best discrimination


## Gap attraction

- When there are multiple close indels, finding the correct alignment can be problematic:
- If true alignment is
...acagaatcagggtcc-gtta...
...acagaatcagg-tcccgtta...
reported (maximum-scoring) alignment will be
...acagaatcagggtccgtta...
...acagaatcaggtcccgtta...
(2 mismatches cost less than 2 indels)
- Similarly, if true alignment is
...acagaatcagggtcccgtta...
...acagaatcagg-tcc-gtta...
reported alignment will be
...acagaatcagggtcccgtta...
...acagaatcagg--tccgtta...
(size-2 indel + mismatch cost less than 2 size- 1 indels)
- This is an issue even for highly similar genomes!
- But worse with increasing divergence
- Ideally, report alignments with local indications of uncertainty
- or at least, several alignments with varying alignment penalties
but this is almost never done
- Problem is ameliorated with multiple sequence alignments


## Word Nucleation Algorithms

- Idea: find short (perfect or imperfect) word matches to 'nucleate' graph search
- Each such match defines short diagonal path
- Only search part of graph 'surrounding' this path
- BLAST: allow imperfect short (e.g. length 3) matches.
- "Neighbors": set of 3-residue sequences having $\geq \mathrm{min}$ score T against some 3 -residue sequence of query
- Scan database seqs until hit word in neighbor list
- then do ungapped extension (along diagonal defined by word match)
- 'significant' matches are those with scores $\geq$ a threshold $S$
- Ungapped matches are effective for detecting related proteins:
- true protein alignments usually include substantial gap-free regions.


## BLAST: Word Nucleating Alignment



- If find $\geq 2$ significant ungapped matches in same seq, expand search to connecting region of matrix, allowing gaps:



## Other Word Nucleation Programs

- FASTA:
- look for clusters of short exact matches, on nearby diagonals;
- when found, extend to gapped alignment
- cross_match:
- do full search of bands around exact matches
- These all still time complexity $O(M N)$
- because \# word matches proportional to $M N$ but with much smaller constant.
- In database searches, most seqs unrelated to query. suggests following strategy:
- use fast word-nucleation algorithm
- e.g. just looking for gap-free matches
to identify sequences 'of interest'
- having scores above a (low) threshold
then use full Smith-Waterman on these
- can get sensitivity nearly as good as full SmithWaterman search.


## Genome alignment

- Challenges:
- Size
- Repeated sequence
- Duplications
- Transposable elements
- Processed pseudogenes
- Other segmental changes
- Deletions
- Inversions, translocations
- Mutation rate variation
- Segmental changes don't conform to edit graph framework!


## Strategy

- Find (many!) word-nucleated local alignments
- Word size $w$ : sensitivity vs specificity
- Example: human ( $\sim 3 \mathrm{~Gb}$ ) vs mouse ( $\sim 2.5 \mathrm{~Gb}$ )
- ~70\% identity in homologous regions
- For each human word, expect $5 \times 10^{9} / 4^{w}$ chance occurrences in mouse ( + rev complement)
- Total matches: $15 \times 10^{18} / 4^{w}$
- Want $w$ large enough for this to be manageable
- Prob that the homologous word matches: . $7^{w}$
- once every $(1 / .7)^{w}=1.43^{w} \mathrm{bp}$
- Want $w$ small enough to ensure $\geq 1$ match within homologous regions
- $w=15: \sim 15 \times 10^{9}$ matches; 1 per 214 homologous bp
- Avoid high-frequency words
- Avoid nucleating in known repeats \& duplications
- But extend into them!
- Use appropriate score matrix \& gap penalties!
- Otherwise, get junk alignments or portions thereof
- Finally, identify chains of compatible local alignments
- Ideally, catalogue the segmental changes that have occurred (duplications, transposable element insertions etc)

