
Lecture 11

• Indel penalties

• Word nucleation algorithms

– BLAST

• Genome alignment
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aCGTTGAATGAccca
gCAT-GAC-GA

Above path corresponds to following alignment (w/ lower case letters 

considered unaligned):



3

Gap Penalties

• Usual scoring scheme assigns same penalty g to 

each gap edge, so 

– weights on extended gaps of size s are linear in s, i.e. 

– total gap penalty gap(s) = s  g.

– e.g. in above example, if each g = -6, total penalty on gap 

would be

gap(5)  =  5   -6  =  -30

TNAVAHVD-----DMPNAL
YEAAIQLQVTGVVVTDATL
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• Would like more flexible gap penalties:

• In proteins, insertions & deletions are rare; 

– but when occur, often consist of several residues, because 

• they are in regions (loops) tolerant of length changes

– at DNA level, indels in protein coding sequence usually a 

multiple of 3 nucleotides

• otherwise, would change reading frame 

• In noncoding DNA sequence, 

– the most common indel size is 1

– but larger indels occur much more frequently than 

multiple independent single-base indels
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• Can allow arbitrary convex gap penalties

– gap(s+t)  gap(s) + gap(t),  where s and t are (integer) gap sizes

by extending edit graph: 

– add edges corresponding to arbitrary length gaps from each vertex 

to each horizontally or vertically downstream vertex 

– (convexity condition prevents favoring two adjacent short gaps 

over a single long gap). 

Time complexity now O(MN(M+N))

– often unacceptable for moderate M, N.

– Also: how to choose appropriate weights? (need data to estimate!)
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Affine Gap Penalties

• Affine gap penalties: 

– less general than arbitrary convex penalties, but 

– more general than linear penalties. 

• Two parameters: 

– gap opening penalty go

– gap extension penalty ge

• gap(n) (penalty for size n gap) is then

go + n ge   = gi + (n – 1) ge

where the gap initiating penalty gi = go + ge
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• Example: for BLOSUM62, good penalties are

– gi = -12,  

– ge = -2

These perform much better than linear penalty 

– (e.g. g = -6)

• N.B. Durbin et al. reverse gi and go

– gi is called the ‘gap opening’ penalty

• Can obtain affine penalties using extension of 

edit graph, retaining complexity O(MN):
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Edit Graph for Affine Gap Penalties
Double # vertices, creating left-right pair in place of each 

original vertex. Each cell looks like this:

• gap-opening edges from left vertex to right vertex of each pair :   

weight  go

• gap extension edges going horizontally or vertically between right 

vertices : weight ge

• diagonal edges originate from either left or right vertex, but always 

go to a left vertex.

ge

ge

ge

gego

go

go

go

each left vertex has out-degree 

and in-degree = 2

each right vertex has out-degree 

and in-degree = 3
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• Paths in the augmented graph still 
correspond to alignments 

– can  more than one path for same alignment 

– but highest scoring paths still give best 
alignments

• Score assigned to size n gap is go + n ge 

– i.e. affine penalty

• ‘Smith-Waterman-Gotoh algorithm’



Finding values for gap penalties

• Direct definition as LLR seems problematic

– what are ‘random alignments’?

• Empirical approach: Given a score matrix (e.g. 

BLOSUM62), for various (go , ge) choices

– Align real sequences to known homologues & 

simulated sequences

– Measure score discrimination (E-values of 

homologue alignments)

– Find (go , ge) giving best discrimination
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• When there are multiple close indels, 

finding the correct alignment can be 

problematic:

Gap attraction



• If true alignment is

reported (maximum-scoring) alignment will be

(2 mismatches cost less than 2 indels)
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...acagaatcagggtcc-gtta...

...acagaatcagg-tcccgtta...

...acagaatcagggtccgtta...

...acagaatcaggtcccgtta...

• Similarly, if true alignment is

reported alignment will be

(size-2 indel + mismatch cost less than 2 size-1 indels)

...acagaatcagggtcccgtta...

...acagaatcagg-tcc-gtta...

...acagaatcagggtcccgtta...

...acagaatcagg--tccgtta...



• This is an issue even for highly similar 

genomes!

– But worse with increasing divergence

• Ideally, report alignments with local 

indications of uncertainty 

– or at least, several alignments with varying 

alignment penalties

but this is almost never done

• Problem is ameliorated with multiple 

sequence alignments
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Word Nucleation Algorithms

• Idea: find short (perfect or imperfect) word matches to 
‘nucleate’ graph search

– Each such match defines short diagonal path

– Only search part of graph ‘surrounding’ this path

• BLAST: allow imperfect short (e.g. length 3) matches.  

– “Neighbors”: set of 3-residue sequences having  min score T 
against some 3-residue sequence of query

– Scan database seqs until hit word in neighbor list

– then do ungapped extension (along diagonal defined by word 
match) 

• ‘significant’ matches are those with scores  a threshold S

• Ungapped matches are effective for detecting related proteins: 

– true protein alignments usually include substantial gap-free regions.  
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BLAST: Word Nucleating Alignment

A S G D R L L I C V MA T F D E I A A H N Y V I A
G
G
L
I
A
S
F
V
D
A
R
L
N
W



16

– If find  2 significant ungapped matches in same seq, 

expand search to connecting region of matrix, allowing 

gaps: 



17



18

Other Word Nucleation Programs

• FASTA: 

– look for clusters of short exact matches, on 
nearby diagonals; 

– when found, extend to gapped alignment

• cross_match: 

– do full search of bands around exact matches

• These all still time complexity O(MN)

– because # word matches proportional to MN

but with much smaller constant.
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• In database searches, most seqs unrelated to query. 

suggests following strategy:

• use fast word-nucleation algorithm

– e.g. just looking for gap-free matches

to identify sequences ‘of interest’ 

– having scores above a (low) threshold 

then use full Smith-Waterman on these 

– can get sensitivity nearly as good as full Smith-

Waterman search.



Genome alignment
• Challenges:

– Size

– Repeated sequence

• Duplications

• Transposable elements

• Processed pseudogenes

– Other segmental changes

• Deletions

• Inversions, translocations

– Mutation rate variation

• Segmental changes don’t conform to 

edit graph framework!
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Strategy
• Find (many!) word-nucleated local alignments 

• Word size w: sensitivity vs specificity 

– Example: human (~3 Gb) vs mouse (~2.5 Gb)

• ~70% identity in homologous regions

• For each human word, expect 5 × 109 / 4w chance 

occurrences in mouse (+ rev complement)

• Total matches: 15 × 1018 / 4w

– Want w large enough for this to be manageable

• Prob that the homologous word matches: .7w

– once every (1 / .7) w = 1.43w bp

– Want w small enough to ensure ≥ 1 match within homologous 

regions

• w = 15:  ~15 × 109  matches; 1 per 214 homologous bp 
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• Avoid high-frequency words

• Avoid nucleating in known repeats & 

duplications

– But extend into them!

• Use appropriate score matrix & gap 

penalties!

– Otherwise, get junk alignments or portions 

thereof
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• Finally, identify chains of compatible local 

alignments

– Ideally, catalogue the segmental changes that 

have occurred (duplications, transposable 

element insertions etc)
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