
Genome 540 discussion
February 4th, 2025

Joe Min

Agenda

Homework 4

Object oriented programming

Homework 4

Overview

1. Write a program to find the highest-weight path in a
directed acyclic graph using dynamic programming

2. Run your program on a linked list created from DNA
sequence

Homework 4: part 1

Read in and process a visual graph

First convert the visual
graph into a text input file
with vertices and edges

Then, find max weight path
with dynamic programming

● With and without
start/end constraints

INPUT FILE
V vii START
V vi
.
V i END
…
E A ii i -1
E B iii i 5
.
E L vii vi -3

With constraints
Score: 4
Begin: vii
End: i
Path: LIDA

No constraints
Score: 8
Begin: vi
End: ii
Path: ID

Dynamic programming example

You can structure your input file
in depth order so it’s easier to
read it in for bookkeeping

INPUT FILE
V I
V II
V III
V IV
V V
E A I II -1
E B I III 5
E C II III 7
E D II IV 4
E E III V 8

Vertex I II III IV V

Highest weight parent I II III IV V

Highest weight path weight 0 0 0 0 0

End Weight

Best overall path

Dynamic programming example

Process nodes (and their
outbound edges) in depth order
and update notes (as needed)

INPUT FILE
V I
V II
V III
V IV
V V
E A I II -1
E B I III 5
E C II III 7
E D II IV 4
E E III V 8

Vertex I II III IV V

Highest weight parent I II I IV V

Highest weight path weight 0 0 5 0 0

End Weight

Best overall path III 5

0

5

0

Dynamic programming example

Continue down the graph in
depth order# INPUT FILE

V I
V II
V III
V IV
V V
E A I II -1
E B I III 5
E C II III 7
E D II IV 4
E E III V 8

Vertex I II III IV V

Highest weight parent I II II II V

Highest weight path weight 0 0 7 4 0

End Weight

Best overall path III 7

0

5
4

0

7

0

Dynamic programming example

Once we run out of edges, we’re
done# INPUT FILE

V I
V II
V III
V IV
V V
E A I II -1
E B I III 5
E C II III 7
E D II IV 4
E E III V 8

Vertex I II III IV V

Highest weight parent I II II II III

Highest weight path weight 0 0 7 4 15

End Weight

Best overall path V 15

0

5
4

0

74

0

7

0

15

Dynamic programming example

We can work backwards to
reconstruct the reversed path:

V → III → II

INPUT FILE
V I
V II
V III
V IV
V V
E A I II -1
E B I III 5
E C II III 7
E D II IV 4
E E III V 8

Vertex I II III IV V

Highest weight parent I II II II III

Highest weight path weight 0 0 7 4 15

End Weight

Best overall path V 15

0

5
4

0

74

0

7

0

15

Homework 4: part 2

Overview

Create a linked list from a DNA
sequence and a scoring scheme

● Positions are vertices
● Bases are edges

Run your program from part 1 on
the graph

GRAPH FILE
V 0
V 1
V 2
V 3
V 4
E A 0 1 -1.49
E G 1 2 .74
E C 2 3 .74
E T 3 4 -1.49

SCORING FILE
A = -1.49
T = -1.49
G = .74
C = .74

Object oriented programming

What are objects?

Objects are instantiations of classes, which are data
structures with custom functions

C++: Python:

https://www.w3schools.com/cpp/cpp_class_methods.asp

What is object oriented programming?

Write programs in such a way that we primarily deal with
objects that interact with each other within code, as
opposed to more abstract representations of data

Example: graphs

To create a trivial graph and print out the neighbors of a
single vertex, we can store value in a dictionary

Non-object oriented pseudocode
vertices = {}
for v_name in [‘v1’, ‘v2’, ‘v3’]:

vertices[v_name] = []
for e_tuple in [(‘v1’, ‘v2’, -1), (‘v1, ‘v3’, 2), (‘v2’, ‘v3’, 1)]:

v_name = e_tuple[0]
v_neighbor = e_tuple[1]
e_weight = e_tuple[2]
vertices[v_name].append((v_neighbor, e_weight))

print([e[0] for e in vertices[‘v1’])

v1

v2

v3

-1

2

1

Example: graphs
Pseudocode
class Vertex:

name is a string
edges is a list of Edge objects
def __init__(self, name):

self.name = name
self.edges = []

def add_edge(self, edge):
self.edges.append(edge)

def get_neighbors(self):
neighbors = []
for edge in self.edges:

self.neighbors.append(edge.end)
return neighbors

class Edge:
start and end are strings
def __init__(self, start, end, weight):

self.start = start
self.end = end
self.weight = weight

Object oriented pseudocode
vertices = {}
for v_name in [‘v1’, ‘v2’, ‘v3’]:

vertices[v_name] = Vertex(v_name)
for e_tuple in [(‘v1’, ‘v2’, -1), (‘v1, ‘v3’, 2), (‘v2’, ‘v3’, 1)]:

v_name = e_tuple[0]
vertex = vertices[v_name]
edge = Edge(v_name, e_tuple[1], e_tuple[2])
vertex.add_edge(edge)

print(vertices[‘v1’].get_neighbors())

v1

v2

v3

-1

2

1

Office hours

Reminder:

Homework 4 is due Sunday, February 9th at 11:59pm!

