
Genome 540 discussion
January 30th, 2025

Joe Min



Agenda

Evaluating data structure performance

Common data structures

Homework 3 questions?



Evaluating data structures



What is a data structure?

Application-level idea way to structure data in such a way 
that it optimizes the storage of physical data as well as the 
efficiency of certain data operations:

● Creating and adding new data
● Retrieving existing data
● Updating or sorting existing data
● Deleting existing data



Evaluating data structures

Storage of data and data operations are evaluated using 
space and time complexity

● Reminder: big O notation defines how something grows 
with respect to a growing input (with some coefficient)
○ O(1) stays fixed and is independent of the size of the input
○ O(n) grows linearly with the size of input
○ O(log(n)) grows at a rate bound by the log of the size of the input



Evaluating data structures

Efficiency complexities are dependent on input, so we 
generally bin performance:

● Average complexity
● Worst case complexity
● Amortized complexity



Comparing static and dynamic lists

To better understand how to evaluate data structures, let’s 
compare static and dynamic lists

https://media.geeksforgeeks.org/wp-content/uploads/20230822183342/static.png



Comparing static and dynamic lists: overhead space

Initial creation

● Statically-sized structures (e.g., static lists) incur a large 
overhead as they pre-allocate space
○ O(n) space complexity

● Dynamically-sized structures (e.g., a dictionary or 
dynamic list) instead have little space overhead
○ O(1) to make the first entry



Comparing static and dynamic lists: adding new data

Static lists

● Space is pre-allocated, so it doesn’t matter how many 
spots are full, we can just put it in the next open spot

● O(1) time complexity

Dynamic lists

● If there are open spots, O(1); if not, it’s O(n)
● Implementation can make the amortized cost O(1)



Dynamic list data addition algorithm

By doubling the 
allocated space 
whenever the list is 
full, we can reduce the 
number of 
allocate+copy events 
that are O(n) each

https://cdn-images-1.medium.com/max/960/1*9s7_mGUIzA_JcOOw-zQh9Q.png



Comparing static and dynamic lists: retrieving data

With a known index, data is retrieved from both lists in 
O(1) time by going to 1 physical spot in memory

When searching for an index with data of a specific value, 
both lists can do so in O(n) time

https://media.geeksforgeeks.org/wp-content/cdn-uploads/Linear-Search.png



Comparing static and dynamic lists: modifying data

To update the values of existing entries, time complexity is 
the same for data modification as it was for data retrieval

● Index known: O(1)
● Search required: O(n)



Comparing static and dynamic lists: sorting data

Both static and dynamic lists can be sorted in O(n*log(n)) 
time using optimized search algorithms

● E.g., merge sort or quick sort

Merge sort gets its log(n) by
continuously halving the input into
O(1) sortable chunks (i.e., a single
comparison)
https://media.geeksforgeeks.org/wp-content/uploads/20240221173657/Merge-Sort.jpg



Comparing static and dynamic lists: deleting data

To delete the values of existing entries, time complexity is 
the same for data modification as it was for data retrieval

● Index known: O(1)
● Search required: O(n)

This is only possible because lists allow for empty indices; 
if we had to dynamically shrink to the size of the data 
every time, this would be much more expensive



Common data structures



Linked list

Creation overhead: O(1)

Adding data: O(n)

Finding data: O(n)

Sorting: n/a or free if handled
during insertions

Deleting data: same as finding
https://cdn.hashnode.com/res/hashnode/image/upload/v1637603328903/E1PjE0gz9.jpeg
https://www.geeksforgeeks.org/insertion-in-linked-list/



Stack

Stacks are designed to keep a specified ordering of data 
called Last-In-First-Out. You probably won’t ever sort or 
change the value of an element in a stack

Creation overhead: O(1)

Adding data: O(1)

Deleting data: O(1)

https://media.geeksforgeeks.org/wp-content/cdn-uploads/20230726165552/Stack-Data-Structure.png



Dictionaries

Creation overhead: O(1)

Adding data: O(1)

Updating data: O(1)

Sorting: n/a or O(nlog(n))

● Have to first get values as a list

Deleting data: O(1)
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Hash_table_3_1_1_0_1_0_0_SP.svg/1200px-Hash_table_3_1_1_0_1_0_0_SP.svg.png



Binary search trees

Creation overhead: O(1)

Adding data: O(h)

Finding data: O(h)

Sorting: Free!

Deleting data: O(h)

https://www.geeksforgeeks.org/introduction-to-binary-search-tree/



Binary search trees

Deleting can be complicated due to the state of the tree:

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/



Binary search trees

Deleting can be complicated due to the state of the tree:

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/



Binary search trees

Deleting can be complicated due to the state of the tree:

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/



Binary search trees

Deleting can be complicated due to the state of the tree:

…but is still O(1) by itself! So the overall is still O(h)
https://www.geeksforgeeks.org/deletion-in-binary-search-tree/



Other common data structures

Queues

Heaps

Trees

Tries

Graphs



How to pick a data structure

Built-in structures are very versatile and general-use

Specific tasks might require specific data structures

● E.g., if you want to keep track of landmarks on a walk 
so you can find your way back, you may want a stack 
to find your next backward landmark in O(1) time

You can also build your own custom types!

● More on implementations on Tuesday



Homework 3 questions?



Office hours

Reminder:

Homework 3 is due Sunday, February 2nd at 11:59pm!


