Genome 540 discussion

January 30th, 2025
Joe Min

NNNNNNNNNNNNNNNNNNNNNN

Agenda

Evaluating data structure performance
Common data structures

Homework 3 questions?

Evaluating data structures

What is a data structure?

Application-level idea way to structure data in such a way
that it optimizes the storage of physical data as well as the
efficiency of certain data operations:

e Creating and adding new data

e Retrieving existing data

e Updating or sorting existing data
e Deleting existing data

Evaluating data structures

Storage of data and data operations are evaluated using
space and time complexity

e Reminder: big O notation defines how something grows

with respect to a growing input (with some coefficient)
o (1) stays fixed and is independent of the size of the input

o O(n) grows linearly with the size of input

o O(log(n)) grows at a rate bound by the log of the size of the input

Evaluating data structures

Efficiency complexities are dependent on input, so we
generally bin performance:

e Average complexity
e \Norst case complexity
e Amortized complexity

Comparing static and dynamic lists

To better understand how to evaluate data structures, let's
compare static and dynamic lists

Static Array Dynamic Array
int a[5] = {1234,5}; int *a = new int[5];
al5] 1\2‘3}4‘5\ *a‘o—bo‘O‘O’OIO‘

0) 2 3 4 0 1 2 3 4

Static & Dynamic Array 96

Comparing static and dynamic lists: overhead space

Initial creation

e Statically-sized structures (e.g., static lists) incur a large
overhead as they pre-allocate space

o O(n) space complexity
e Dynamically-sized structures (e.g., a dictionary or

dynamic list) instead have little space overhead
o O(1) to make the first entry

Comparing static and dynamic lists: adding new data

Static lists

e Space is pre-allocated, so it doesn’t matter how many
spots are full, we can just put it in the next open spot
e O(1) time complexity

Dynamic lists

e |[f there are open spots, O(1); if not, it's O(n)
e Implementation can make the amortized cost O(1)

Dynamic list data addition algorithm

By doubling the

_ g | Com

allocated space Wi?ﬁ{:ﬁii{";‘”:{'ﬁh‘?éﬁ.‘fb"* 7| oo

. . 2%i)th insertions Copy

whenever the list is S o
5

full, we can reduce the s
3 3

number of o (2 ijj 2
1 1 1 1

allocate+copy events

After After After

After

th at a re O (n) eaCh Tinsertion 2insertions 4insertions 8 insertions

https://cdn-images-1.medium.com/max/960/1*9s7_mGUIzA_JcOOw-zQh9Q.png

Unused
Space

Used
Space

At any
intermediate stage

Comparing static and dynamic lists: retrieving data

With a known index, data is retrieved from both lists in
O(1) time by going to 1 physical spot in memory

When searching for an index with data of a specific value,
both lists can do so in O(n) time

Linear Search
Find '20'

YYD

0 1 2 3 4 5 6 7 8
| 10]50]3070] 80| 60[20] 90 40

Comparing static and dynamic lists: modifying data
To update the values of existing entries, time complexity is
the same for data modification as it was for data retrieval

e Index known: O(1)
e Search required: O(n)

Comparing static and dynamic lists: sorting data

Both static and dynamic lists can be sorted in O(n*log(n))
time using optimized search algorithms

e E.g., merge sort or quick sort [z]a[w0
Merth sortlger;csllt§ Io?h(n). by - IcIy 30\
continuously halving -e inpu .|n 0 L L
O(1) sortable chunks (i.e., a single 27|58 [10]s

comparison) T

Comparing static and dynamic lists: deleting data

To delete the values of existing entries, time complexity is
the same for data modification as it was for data retrieval

e Index known: O(1)
e Search required: O(n)

This is only possible because lists allow for empty indices;
If we had to dynamically shrink to the size of the data
every time, this would be much more expensive

Common data structures

Linked list

Creation overhead: O(1) el

Adding data: O(n) z 181 0):112 --24Head Linki-iSt 42
4 95 0x116 /-

Finding data: O(n) T T « | _l/\ _

. . Index Memory Locations F
Sorting: n/a or free if handled

during insertions i

\‘ | 75 | Tail

Deleting data: same as finding

https://cdn.hashnode.com/res/hashnode/image/upload/v1637603328903/E1PjE0gz9.jpeg —— |NSert a Node before a Given Node in Linked List
https://www.geeksforgeeks.org/insertion-in-linked-list/

Stack

Stacks are designed to keep a specified ordering of data
called Last-In-First-Out. You probably won'’t ever sort or
change the value of an element in a stack

Creation overhead: O(1) f\ (‘:pm

Adding data: O(1) el e

Deleting data: O(1) B ||| B |
A A

Dictionaries

. hash
Creation overhead: O(1) keys function

Adding data: O(1) - o1
02
Updating data: O(1) e 7C: 03

Sorting: n/a or O(nlog(n)) Sandrabee —

15

e Have to first get values as a list

L}
Deleting data: O(1)
L}
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Hasl|

buckets

521-8976

521-1234

521-9655

Binary search trees

Creation overhead: O(1)
Adding data: O(h) R IO
ol
¥y @x/ '\ @ ’/

Deleting data: O(h) -

Left subtree contains Right subtree contains all
all elements less than 8 elements greater than 8

Finding data: O(h) @

Sorting: Free!

https://www.geeksforgeeks.org/introduction-to-binary-search-tree/

Binary search trees

Deleting can be complicated due to the state of the tree:

Case 1: Delete A Leaf Node In BST

Deleted Node 20

Delete Node 20

Deletion In BST ==

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/

Binary search trees

Deleting can be complicated due to the state of the tree:

Case 2: Delete A Node With Single Child In BST

Delete Node 70

Deletion In BST

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/

Binary search trees

Deleting can be complicated due to the state of the tree:

Case 3:Delete A Node With Both Children In BST

Delete 50

Delete Node 50 After Deletion

Deletion In BST (=12)

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/

Binary search trees

Deleting can be complicated due to the state of the tree:

Case 3:Delete A Node With Both Children In BST

Deletion In BST (=12)

...but is still O(1) by itself! So the overall is still O(h)

https://www.geeksforgeeks.org/deletion-in-binary-search-tree/

Other common data structures

Queues
Heaps
Trees
Tries

Graphs

How to pick a data structure

Built-in structures are very versatile and general-use
Specific tasks might require specific data structures

e E.g., if you want to keep track of landmarks on a walk
so you can find your way back, you may want a stack
to find your next backward landmark in O(1) time

You can also build your own custom types!

e More on implementations on Tuesday

Homework 3 questions?

Office hours

Reminder:

Homework 3 is due Sunday, February 2nd at 11:59pm!

