
Genome 540 discussion

January 21st, 2025 Joe Min

Homework 2 overview

Dictionaries and hash functions

Homework 2 overview

Homework 2: build regional model(s)

Get nucleotide frequencies

- Read in the fasta for the mouse 10mb region
- Nucleotide counts and frequencies
- Dinucleotide counts and frequencies
 - Additionally, dinucleotide *conditional* frequencies

Homework 2: use the models generatively

For each of the three mouse models (equal frequency, 0-th order Markov, 1st order Markov), generate a 10mb sequence

• Generate the sequence base-by-base (iteratively) by appropriately sampling from model frequencies

Homework 2: calculating frequencies

The equal frequency model:

- A: 0.25
- C: 0.25
- G: 0.25
- T: 0.25

Homework 2: calculating frequencies

0-th order Markov model

- Sequence: ACTGA
 - Nucleotide counts: \bigcirc
 - A: 2
 - C: 1
 - G: 1
 - T: 1

Divide by total (5)

- Sequence: ACTGA
 - Nucleotide frequencies: Ο
 - A: 0.4 \bigcirc
 - C: 0.2
 - G: 0.2
 - T: 0.2

Total: 5

Order 1 Markov Model

Sequence: ACTGATGATGGTACA Length = 15; number of dinucleotides = 14

	A	Т	G	С
Α	0	2	0	2
Т	1	0	3	0
G	2	1	1	0
С	1	1	0	0

Dinucleotide Frequencies e.g. # AT = 2

	А	Т	G	С
А	0	.143	0	.143
Т	.071	0	.214	0
G	.143	.071	.071	0
С	.071	.071	0	0

Dinucleotide Probabilities e.g. P(AT) = 0.143

	А	Т	G	С
А	0	.5	0	.5
Т	.25	0	.75	0
G	.5	.25	.25	0
С	.5	.5	0	0

Nucleotide Conditional Probabilities e.g. P(T|A) = 0.5

Homework 2: use the models generatively

For each of the three mouse models (continued)

- Output simulated sequence to a fasta file
- Run your HW1 program between the simulated sequence and the human 10mb region
 - Simulating sequences should be a relatively quick process, so if your HW1 takes a long time, might be best to start early!

Homework 2: final thoughts

Make sure to submit short answers to questions in part 4

Please match the template

- Can use the command line utility `diff` or even just an online text comparison tool
- Will begin to dock points

Dictionaries and hash functions

Dictionaries

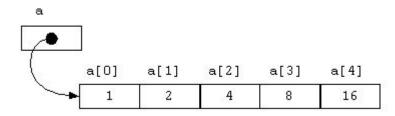
Dictionaries (hashmaps in C++) are data structures that are a collection of data values that can be accessed by their corresponding keys

{ 'key_1': 'value_1',
'key_2': 'value_2',

. . .

Dictionaries

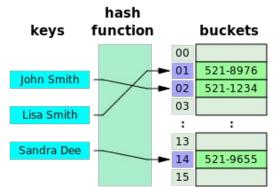
Values can be any data type


Keys have different requirements per language, but in general the keys can't change

• Why? Let's take a look at its implementation

... but first, back to lists

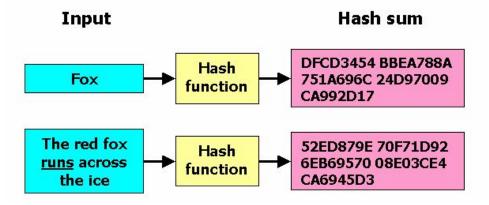
Remember: lists and arrays are sequential chunks physical memory


Here we have an array "a" holding 5 integer values

Dictionaries hash keys

Dictionaries instead use a "hash function" to transform the keys into memory addresses

 For example, the key "John Smith" is passed to a function that returns "01" as the memory location



- The value at this entry is the string "521-8976"
- Values live in discontinuous locations of memory

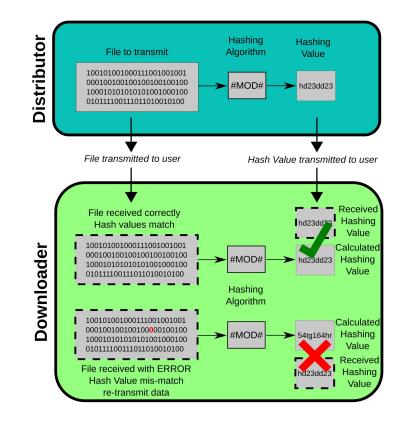
Hash functions

Broadly, hash functions take in a variably-sized input and map them to a fixed-size output

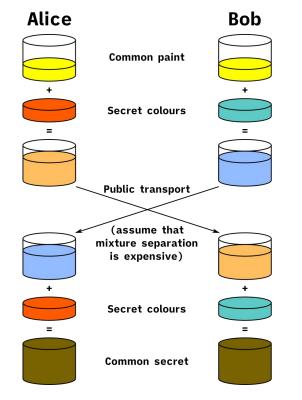
• A very trivial example could be the *modulo* function (%)

https://ms.codes/cdn/shop/articles/0_VfVhDHeHJW7LKpkr.png?v=1707823797

Hash functions


Other key properties of a hash function are it should:

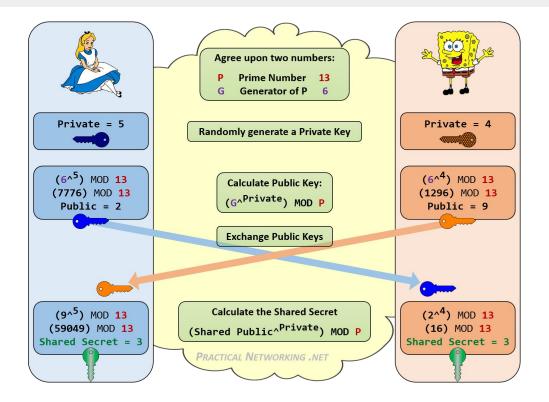
- Be deterministic (otherwise we could never retrieve the correct value for the same key)
- Uniformly distribute output (to avoid memory location collisions as much as possible)
- Experience an "avalanche effect" (small changes in input should have drastic implications for the output)

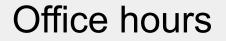

Example usage: file sameness

Often, hash function "checksums" are used to ensure a downloaded file is the same as the intended file

• Pass the whole file to a hashing algorithm

Example usage: public/secret key exchange




In Diffie-Hellman key exchange (e.g., when using an SSH key), hashing a known quantity (public key) with an unknown quantity added (secret key) creates a unique outcome that only the intended secret key can use or decode

Example usage: public/secret key exchange

Stepping out of the abstract paint analogy:

The shared secret
can now be used for
things like
authentication

Good work on homework 1!

Reminder:

Homework 2 is due this Sunday (Jan 26) at 11:59pm!