
Genome 540 discussion
January 21st, 2025

Joe Min

Agenda

Homework 2 overview

Dictionaries and hash functions

Homework 2 overview

Homework 2: build regional model(s)

Get nucleotide frequencies

● Read in the fasta for the mouse 10mb region
● Nucleotide counts and frequencies
● Dinucleotide counts and frequencies

○ Additionally, dinucleotide conditional frequencies

Homework 2: use the models generatively

For each of the three mouse models (equal frequency, 0-th
order Markov, 1st order Markov), generate a 10mb
sequence

● Generate the sequence base-by-base (iteratively) by
appropriately sampling from model frequencies

The equal frequency model:

● A: 0.25
● C: 0.25
● G: 0.25
● T: 0.25

Homework 2: calculating frequencies

Homework 2: calculating frequencies

0-th order Markov model

● Sequence: ACTGA
○ Nucleotide counts:
○ A: 2
○ C: 1
○ G: 1
○ T: 1

Total: 5

● Sequence: ACTGA
○ Nucleotide frequencies:
○ A: 0.4
○ C: 0.2
○ G: 0.2
○ T: 0.2

Divide by total
(5)

Order 1 Markov Model

Sequence: ACTGATGATGGTACA
Length = 15; number of dinucleotides = 14

A T G C

A 0 2 0 2

T 1 0 3 0

G 2 1 1 0

C 1 1 0 0

A T G C

A 0 .143 0 .143

T .071 0 .214 0

G .143 .071 .071 0

C .071 .071 0 0

A T G C

A 0 .5 0 .5

T .25 0 .75 0

G .5 .25 .25 0

C .5 .5 0 0

Dinucleotide
Frequencies
e.g. # AT = 2

Dinucleotide
Probabilities

e.g. P(AT) = 0.143

Nucleotide
Conditional Probabilities

e.g. P(T|A) = 0.5

fir
st

 n
uc

le
ot

id
e

Homework 2: use the models generatively

For each of the three mouse models (continued)

● Output simulated sequence to a fasta file
● Run your HW1 program between the simulated

sequence and the human 10mb region
○ Simulating sequences should be a relatively quick process, so if

your HW1 takes a long time, might be best to start early!

Homework 2: final thoughts

Make sure to submit short answers to questions in part 4

Please match the template

● Can use the command line utility `diff` or even just an
online text comparison tool

● Will begin to dock points

Dictionaries and hash functions

Dictionaries

Dictionaries (hashmaps in C++) are data structures that
are a collection of data values that can be accessed by
their corresponding keys

● { ‘key_1’: ‘value_1’,
 ‘key_2’: ‘value_2’,
 …
 ‘key_n’: value_n’ }

Dictionaries

Values can be any data type

Keys have different requirements per language, but in
general the keys can’t change

● Why? Let’s take a look at its implementation

…but first, back to lists

Remember: lists and arrays are sequential chunks
physical memory

Here we have an array “a” holding 5 integer values

https://www2.hawaii.edu/~walbritt/ics212/materials/arrays_h1_381x122.gif

Dictionaries hash keys

Dictionaries instead use a “hash function” to transform the
keys into memory addresses

● For example, the key “John Smith”
is passed to a function that returns
“01” as the memory location

● The value at this entry is the string “521-8976”
● Values live in discontinuous locations of memory

https://cdn.sanity.io/images/kuana2sp/production-main/c015c55fca5c286607aff134760bb35e5d54db32-1011x704.webp

Hash functions

Broadly, hash functions take in a variably-sized input and
map them to a fixed-size output

● A very trivial example could be the modulo function (%)

https://ms.codes/cdn/shop/articles/0_VfVhDHeHJW7LKpkr.png?v=1707823797

Hash functions

Other key properties of a hash function are it should:

● Be deterministic (otherwise we could never retrieve the
correct value for the same key)

● Uniformly distribute output (to avoid memory location
collisions as much as possible)

● Experience an “avalanche effect” (small changes in
input should have drastic implications for the output)

Example usage: file sameness

Often, hash function
“checksums” are used to
ensure a downloaded file is the
same as the intended file

● Pass the whole file to a
hashing algorithm

https://en.wikipedia.org/wiki/MD5#/media/File:CPT-Hashing-File-Transmission.svg

Example usage: public/secret key exchange

In Diffie-Hellman key exchange
(e.g., when using an SSH key),
hashing a known quantity (public
key) with an unknown quantity
added (secret key) creates a unique
outcome that only the intended
secret key can use or decode

https://traefik.io/static/e1495bb25e44a6cbd76273ca34ecff77/800px-Diffie-Hellman_Key_Exchange.svg.png

Example usage: public/secret key exchange

Stepping out of the
abstract paint analogy:

● The shared secret
can now be used for
things like
authentication

https://www.practicalnetworking.net/series/cryptography/diffie-hellman/

Office hours

Good work on homework 1!

Reminder:

Homework 2 is due this Sunday (Jan 26) at 11:59pm!

