Genome 540 discussion

January 9th, 2025
Joe Min

NNNNNNNNNNNNNNNNNNNNNN

Agenda

Memory and pointers
Getting started in C++
Getting around Python

Memory and pointers

Computers handle data like a post office

Permanent things, like 540_slides_final.pptx
files, get saved “to disk”,
or are given a permanent
home in the mail room

AT EEOOANN

BN
77NN

Korea trip photos

Memory is a storage cart

Running programs, on the memory
other hand, are more like
office staff with a shared
cart, or RAM

Staff can temporarily store,
move, and change things
on the shared cart, but only

“Hello, world!”
the parts allocated to them hello_world.exe string

Packages hold data

Packages are the data that take up space on the cart,
such as variables in a program (e.g., ints and strings)
Different data need different sized packages

e E.g., anintin Python requires 4 bytes (32 bits), but a
string requires 1-4 bytes per character, plus another 48
bytes of metadata/overhead

Memory addresses

Memory addresses tell us
where on the cart (where in
RAM) our variable lives

E.g., int a has a value of 3,
but a memory address of
“upper basket, top left corner”,
and its box size is 4 bytes

Memory addresses

In reality, addresses are indexed
locations on computer hardware

The value at that location is the value
of the variable (“37)

The program understands that when

we say “a’, we mean “get me the
value that lives at a’'s address, which

s 3"

Address

Value

0x00

01001010

0x01

10111010

0x02

01011111

0x03

00100100

0x04

01000100

0x05

10100000

0x06

01110100

0x07

01101111

0x08

10111011

OxFE

11011110

OxFF

10111011

Pointers

Pointers are special ints whose values are memory addresses for other
variables, kind of like a scavenger hunt prize that’s just another clue

Address of b f Ox7fffffffd7a0 \ > QOx7fffffffd79c \ Address of a

Value of b Ox7fffffffd79c 3 Value of a
(address of a)

int *b = &a inta=3

K Pointer / K Variable /

Getting started in C++

“Hello World” in C++

In terminal or from your Run the executable
helloworld.cpp Dockerfile, compile
helloworld.cpp to an executable

include <}ostream>
int main() [
std::cout << "Hello World!" << std::endl; > $ g++ -0 helloworld helloworl—d'Cpp

return 0; I

$./helloworld

Compiler Your script

Desired
executable
name

Output:
Hello World!

C++ types: pointers vs. references

Remember that in C++, data is statically typed

e intfa=1;

o “a’is a variable of type integer with value 1
Pointers are variables of type “special integer”

e int* b= &a;
o “b”is an integer that corresponds to a memory address
o | think of this as b having type “int*

C++ types: pointers vs. references

References are aliases for existing variables

e int& c=a;
o “C”is a reference to the integer “a”
o | think of this as ¢ having type “int&”, or reference-to-int

o In most cases c will behave exactly like a

Using pointers and references

On the left side of variable declarations

e These help define the type
e int* to declare a pointer
e int& to declare a reference to an int

When used with existing variables

e Use “&” to reference an address
e Use “*” to dereference an address

examples > €+ pointers.cpp

1 clude <io

2

3 main(int argc, char gv){

4 int a =

& intx b =

6 int& c

7 // print the a

8 std:: ar

9 std:: “b: " b

10 std:: H

11

12 (/DT the a

i3 d "&a: &

14 d "&b: b

15 std "&c: &

16

7 [/ he types o , a G
18 std t << "type of a: " << typeid(a)
19 std ype of b: " << typeid(b)
20 std pe of c: " << typeid(c)
21!

22 re 0

230

5837b85920d0:/# ./pointers

a: 1

b: oxffffdl3b4les
c: 1

&a: Oxffffdl3bsles
&b: Oxffffdl3bsle8
&c: Oxffffdl3bsles
type of a: i

type of b: Pi

type of c: i

C++ types: arrays vs. vectors

e \ectors are like arrays, but they are dynamic

e \ectors can be resized, arrays cannot

e Adding new elements to a vector is slow and dynamic resizing
may take up more memory than is needed
o You should reserve the amount of memory you need when

you declare a vector!!!

int my_array[3] = {1,2,3}; // d is an array of integers

std::vector<int> my_vector = {1,2,3}; // e is a vector of integers

my_vector.push_back(4); // add 4 to the end of my_vector

my_vector.pop_back(); // remove the last element of my_vector so that it is the same size as my_array
my_vector.reserve(100); // reserve space for 100 integers in my_vector

Pointers to arrays, and arrays of pointers

e Pointer to an array
o int (*pntr_array)[5]; // a pointer to an array of 5 ints

e Array of pointers
o int *pntr_array[5]; // an array of 5 pointers to integers

e Pointer to a vector
o std::vector<int>*

e \ector of pointers
o std::vector<int*>

Arrays are pointers to blocks of memory

e Arrays just point to the start of a
memory block

e Array indices are just pointer conzf c20|r| *word = “hello”;
. . . word = nello
arithmetic and dereferencing (word + 1) = ello
: word[0] = h
comblned — . ord<h
o a[12] is the same as *(a + 12) word[1] = e
o &a[3]isthesameasa+ 3 *(word + 1) = e
e Large arrays should be dynamically
int n = some_large_number;
allocated (on the heap) — ouble * d = new double[n];

e Make sure you delete them
—gp- delete[] d;

Structs are a custom data type in C++

e Structs are like a very simple class

e Used to store data
e (Can contain variables of any type (including pointers and other

structs)

struct my_struct {
int my_int;
double my_double;
std::istring my_string;
std::vector<int> my_vector;

H

Reading Files

g filename, std::string& contents, int& num lines) [
eam input(filename);
string line;

le (std::getline(input, line
contents += line + "\n";
num lines += 1;

Getting around Python

Substrings make new strings

In general, getting the substring of an existing string
makes a new string in a new memory location, taking up
as much memory as the original string, minus excluded
characters

examples > python > & normal_substring.py abb4lee42d2d:/# python source/normal_substring.py
i e 6B Memory location of parent_string : 281472860872848
g def main(}: Memory I!.ocation of norma}_substring: 281472860872960
4 parent_string = "I AM A VERY LONG STRIITING" Total size of parent_string: 107
5 normal_substring = parent_string[5:len(parent_string)] Total size of normal_substring: 102
6 Normal substring contains:
7 # Normal substring methods will create a copy in a new memory location A VERY LONG STRIIIIIIIIIIIIIII IITTTITTTIITITIIITIITTITIITIIIING
8 # the substring will take up as much memory as the number of duplicated characters requires
9 print(f'Memory location of parent_string : {id(parent_string)}')
10 print(f'Memory location of normal_substring: {id(normal_substring)}')
11 print(f'Total size of parent_string: {sys.getsizeof(parent_string)}')
12 print(f'Total size of normal_substring: {sys.getsizeof(normal_substring)}') Only Saved 5 bytes'
13 print(f'Normal substring contains:\n{normal_substring}"')
14
15 if _ _name__ == "_ main_ ":

16 main()

Custom substring class

examples > python > %@ custom_substring.py
1 import sys

2

3] class Substring:
4 start_i = -1
5 end_i = -1
6
7
8

A way around this is to
implement a new “substring” e s e

10 self.end_i = end_i
il self.parent_string = parent_string

class that holds a reference to e —

5 custom_substring = Substring(5, len(parent_string), parent_string)
16
“ ’, - 17 # The Substring class saves a reference to the parent string and just stores an

18 # additional index to the start of the substring

a S h a red a re nt Strl n a n d a 19 # This still creates some memory overhead at a new location for the new instance of the Substring class
20 # but it is much less than creating a new string object (unless the new string is very short)
21 print(f'Memory location of parent_string : {id(parent_string)}')
22 print(f'Memory location of custom_substring: {id(custom_substring)}')

23 print(f'Total size of parent_string: {sys.getsizeof(parent_string)}')

]]
St‘ l rtl n g I n d eX 24 print(f'Total size of the custom substring is: {sys.getsizeof(custom_substring)}')
25

26 # Actually accessing the characters in this custom substring requires more developer work though

27 # for example, to print the s ring without storing additional characters,
28 # you need to loop through the parent strin d print the parent character
29 print(“Custom substring contains:")

30 for i in range(custom_substring.start_i, custom_substring.end_i):

31! print(parent_string[il, end='")

abb4lees42d2d:/# python source/custom_substring.py 32 print()

Memory location of parent_string : 281473369594256 S om0 e

Memory location of custom_substring: 281473377790208 35 main()

Total size of parent_string: 107

Total size of the custom substring is: 48 -— OO .
Custom substring contains: huge SaV|ngS'
A VERY LONG STRIING

Other Python tips

Some libraries are can help workflow efficiency

e Numpy for numerical data and matrix math
e Pandas for managing tabular data
e Cython for compiling Python down to C

If you have other Python questions, feel free to Slack me!

Questions?

About the discussion topic or the homework!

Image references

Mail room

Pushed mail cart

Cart upper lower

Memory addresses

https://www.packageconcierge.com/wp-content/uploads/2022/08/the-pinnacle-65-gallery-image-19-1080x675.jpg
https://media.gettyimages.com/id/200147151-001/photo/man-pushing-mail-trolley-in-office-smiling.jpg?s=612x612&w=gi&k=20&c=G2GFiFn-bcv0OOkliNA_5rFqPBROgvHDP1KNu1t8l3Q=
https://img.uline.com/is/image/uline/H-2862_txt_4_USEng?$Mobile_Zoom$
https://computerscience.chemeketa.edu/cs160Reader/_images/memory.png

