
Genome 540 discussion
January 9th, 2025

Joe Min

Agenda

Memory and pointers

Getting started in C++

Getting around Python

Memory and pointers

Computers handle data like a post office

Permanent things, like
files, get saved “to disk”,
or are given a permanent
home in the mail room

Korea trip photos

540_slides_final.pptx

Memory is a storage cart

Running programs, on the
other hand, are more like
office staff with a shared
cart, or RAM

Staff can temporarily store,
move, and change things
on the shared cart, but only
the parts allocated to them hello_world.exe

“Hello, world!”
string

memory

Packages hold data

Packages are the data that take up space on the cart,
such as variables in a program (e.g., ints and strings)

Different data need different sized packages

● E.g., an int in Python requires 4 bytes (32 bits), but a
string requires 1-4 bytes per character, plus another 48
bytes of metadata/overhead

Memory addresses

Memory addresses tell us
where on the cart (where in
RAM) our variable lives

E.g., int a has a value of 3,
but a memory address of
“upper basket, top left corner”,
and its box size is 4 bytes

a = 3

b = 5

Memory addresses

In reality, addresses are indexed
locations on computer hardware

The value at that location is the value
of the variable (“3”)

The program understands that when
we say “a”, we mean “get me the
value that lives at a’s address, which
is 3”

VariablePointer

Pointers

Pointers are special ints whose values are memory addresses for other
variables, kind of like a scavenger hunt prize that’s just another clue

0x7fffffffd79c 3

0x7fffffffd7a0 0x7fffffffd79cAddress of b

Value of b
(address of a)

int *b = &a int a = 3

Value of a

Address of a

Getting started in C++

“Hello World” in C++

helloworld.cpp
In terminal or from your

Dockerfile, compile
helloworld.cpp to an executable

Run the executable

Output:
Hello World!

Compiler

Desired
executable

name

Your script

C++ types: pointers vs. references

Remember that in C++, data is statically typed

● int a = 1;
○ “a” is a variable of type integer with value 1

Pointers are variables of type “special integer”

● int* b = &a;
○ “b” is an integer that corresponds to a memory address
○ I think of this as b having type “int*”

C++ types: pointers vs. references

References are aliases for existing variables

● int& c = a;
○ “c” is a reference to the integer “a”
○ I think of this as c having type “int&”, or reference-to-int
○ In most cases c will behave exactly like a

Using pointers and references

On the left side of variable declarations

● These help define the type
● int* to declare a pointer
● int& to declare a reference to an int

When used with existing variables

● Use “&” to reference an address
● Use “*” to dereference an address

C++ types: arrays vs. vectors

● Vectors are like arrays, but they are dynamic
● Vectors can be resized, arrays cannot
● Adding new elements to a vector is slow and dynamic resizing

may take up more memory than is needed
○ You should reserve the amount of memory you need when

you declare a vector!!!
int my_array[3] = {1,2,3}; // d is an array of integers
std::vector<int> my_vector = {1,2,3}; // e is a vector of integers
my_vector.push_back(4); // add 4 to the end of my_vector
my_vector.pop_back(); // remove the last element of my_vector so that it is the same size as my_array
my_vector.reserve(100); // reserve space for 100 integers in my_vector

Pointers to arrays, and arrays of pointers

● Pointer to an array
○ int (*pntr_array)[5]; // a pointer to an array of 5 ints

● Array of pointers
○ int *pntr_array[5]; // an array of 5 pointers to integers

● Pointer to a vector
○ std::vector<int>*

● Vector of pointers
○ std::vector<int*>

Arrays are pointers to blocks of memory
● Arrays just point to the start of a

memory block
● Array indices are just pointer

arithmetic and dereferencing
combined

○ a[12] is the same as *(a + 12)
○ &a[3] is the same as a + 3

● Large arrays should be dynamically
allocated (on the heap)

● Make sure you delete them

int n = some_large_number;
double * d = new double[n];

const char *word = “hello”;
word = hello
(word + 1) = ello
word[0] = h
*word = h
word[1] = e
*(word + 1) = e

delete[] d;

Structs are a custom data type in C++

● Structs are like a very simple class
● Used to store data
● Can contain variables of any type (including pointers and other

structs)
struct my_struct {
 int my_int;
 double my_double;
 std::string my_string;
 std::vector<int> my_vector;

};

Reading Files

Getting around Python

Substrings make new strings

In general, getting the substring of an existing string
makes a new string in a new memory location, taking up
as much memory as the original string, minus excluded
characters

only saved 5 bytes!

Custom substring class

A way around this is to
implement a new “substring”
class that holds a reference to
a shared “parent” string and a
starting index

huge savings!

Other Python tips

Some libraries are can help workflow efficiency

● Numpy for numerical data and matrix math
● Pandas for managing tabular data
● Cython for compiling Python down to C

If you have other Python questions, feel free to Slack me!

Questions?

About the discussion topic or the homework!

Image references

Mail room

Pushed mail cart

Cart upper lower

Memory addresses

https://www.packageconcierge.com/wp-content/uploads/2022/08/the-pinnacle-65-gallery-image-19-1080x675.jpg
https://media.gettyimages.com/id/200147151-001/photo/man-pushing-mail-trolley-in-office-smiling.jpg?s=612x612&w=gi&k=20&c=G2GFiFn-bcv0OOkliNA_5rFqPBROgvHDP1KNu1t8l3Q=
https://img.uline.com/is/image/uline/H-2862_txt_4_USEng?$Mobile_Zoom$
https://computerscience.chemeketa.edu/cs160Reader/_images/memory.png

