Genome 540 full lecture

March 11th, 2025
Joe Min

NNNNNNNNNNNNNNNNNNNNNN

Agenda

Homework 9 overview
Connecting to a website
Moving data over established connections

Network vulnerabilities

Homework 9

Homework 9

Part 1. Implement a 2-state HMM with empirically-derived
parameters where the states correspond to evolutionarily
conserved or neutral regions

Part 2: Use your HMM to find the Viterbi parse for a
3-sequence alignment of dog, mouse, and human
genomic sequences

Part 1. empirically-derived parameters

State 1: neutrally evolving

e Using the provided list of emission counts
from a large set of ancient repeat sequences,

calculate emission probabilities
o Column 1 is human

o Column 2 is dog

o Column 3 is mouse

AAA
AAC
AAT
AAG
AA-
ACA
ACC
ACT
ACG
AC-

10222095
481243
420185
1415675
273456
852624
179459
99493
167810
29636

Part 1. empirically-derived parameters

State 1: neutrally evolving

e For each emission, count the observed

symbol then divide that by the total counts

o E.g., for ‘AAA, this would be:
10,222,095 / TOTAL

e These are your emission probabilities for the
neutral state of your HMM

AAA
AAC
AAT
AAG
AA-
ACA
ACC
ACT
ACG
AC-

10222095
481243
420185
1415675
273456
852624
179459
99493
167810
29636

Part 1. empirically-derived parameters

State 2: evolutionarily conserved

e Do the same thing but using counts from a
3-sequence alignment from putative
functional sites

e Emission symbols corresponding with
conservation (e.g., ‘AAA or ‘CCC’) should
have higher probabilities here compared to
their probabilities in State 1

AAA
AAC
AAT
AAG
AA-
ACA
ACC
ACT
ACG
AC-

2375583
21337
10886
56328
3205
33210
12122
2270
5187
374

Part 1: Making the initial HMM

State 1 is neutral

State 2 is conserved

Initiation probabilities

o mi:0.95
o 2. 0.05

Emission probabilities

e Calculated using counts

‘ransition probabilities

to State 1 to State 2
From State 1 an =0.95 a2z =0.05
From State 2 az =0.10 a2 =0.90

Part 2: using the HMM

bi(T--)

H

Part 2: the Viterbi parse

Now, using dynamic programming, determine the highest
probability state sequence for the observed alignment

chr7:26924045-26924056
hgl8 TGCTCACATTTT
canFam2 —CTCACAGTTT
mm9 ~————CGCTT-

chr7:26924057-26924120

hg18 CTAGAAGGATTAATGTTCTGTAGATCTATTGATCTTCTACATTCTTCTTAAAGTATCCAGGGTA
canFam2 TCAGAGGGATTAGTGTTCTGTGGATCTATTGATCTTCTGCACTCTTCCTAAAGTATCTGGGGGA
mm9 CCAGAGGGAGTGGTGTTCTGTAGATCTATCGACCTTC~—CACGCAGCTAAAAGTACCCTGGGTG

chr7:26924121-26924289

hg18 ATCATTAACAATACTTTGTTTTGATTTACTTGCCTGGTGTCTGAGGCTCTTCCAGCTCTCTACAATACATTTGCGCTTTATTCATGATGCTTATTCTGTAGATAAAGACAGCACATTACTGGCATTTGTAACTGGGAGGCTTAAAATTTTTAAACATAAAATTAGAGAT
canFam2 ATCATTAGCAACACTTTGTTCTGATCTACTTGCCTGTCATCCAAGGCTATTCCAGCTCTCTAAAATACATTTGTGCTTTATTCATCATGCTTATTCTATA-ATAAAGACCTTACCTTACTGGCATTTATAACTGGGAGGCATAAGACTTTTAAAAATTAGATTATATGT
mm9 == ACTTCGCTCTGCTCCACTTGCCTGACATCCAAGGCTCTCCCAGTTCTGTATAATGTCTTCGTGTTTCATTCACTATTCTTATGTTATA-———AAGACTGAGTGTTCTTGGCACCTTCAATTGGAAAGCTTAA-—-TCAAAAAAGTAGAT———————

chr7:26924290-26924313

hg18 AATCTAATGTTTAGATTAGGGTTA
canFam2
mmg ———— TTAGA-—————= TA

chr7:26924314-26924339

hg18 GATTTTTAAATAGGGTATAGAACTTC
canFam2 GCCTTTTAAGTAGGGTGTAGATTTTC
mm9 —~CCTTTTAAATGAGACACAGATCTTC

chr7:26924340-26924382

hgl8 AAAAGAAGGTGGTTTTCTCTTTCCCTGGAAATATTCAGAAAAC
canFam2 AAGACAAAGTGGTCTTCTCTTTCCCTGGAAATACTCAGAAGAG
mm9 ATGAGAAAGGAGACTTCTCTTTCCCTGGAAATAG-————————

Part 2: using the HMM

bi(T--)

w1 =0.95
L 34
m2=0.05

chr7:26924045-26924056
hg18 TGCTCACATTTT
canFam2 —--CTCACAGTTT
mm9 ————— CGCTT-

Part 2: using the HMM

bi(T--)

ﬂ

Part 2: using the HMM

bi(T--)

Part 2: using the HMM

b1(T--) b1(G--) bi(CC-)

ﬂ

Homework 9: output format
State histogram that counts how many times we were in
each state

e E.g., if the state sequenceis“1 12117, we should
report:

State Histogram
1=4

2=1

Homework 9: output format
Segment histogram that counts how many contiguous
segments of the same state we have

e E.g., if the state sequenceis“1 12117, we should
report:

State Histogram
1=4

2=1

Homework 9: output format
Segment histogram that counts how many contiguous
segments of the same state we have

e E.g., if the state sequenceis“1 12117, we should
report:

Segment Histogram
1=2

2=1

Homework 9: output format
Segment histogram that counts how many contiguous
segments of the same state we have

e E.g., if the state sequenceis“1 12117, we should
report:

Segment Histogram
1=2

2=1

Homework 9: output format

Initial State Probabilities:

Initial state probabilities and transition 120.90000

2=0.10000

probabilities (the ones given at the Transition Probabilities:
1,1=0.99000
beginning)

1,2=0.01000
,1=0.20000
=0.80000

ssion Probabilities:
-—=0.20000
.20000
.20000
.20000

Emission probabilities for all observed 'i
symbols in alphabetical order i

e First for state 1, then for state 2

2,A-—=0.10000
2,A-A=0.20000
2,A-C=0.25000
2,A-G=0.25000
2,A-T=0.20000
etc.

Homework 9: output format

Coordinates of the top 10 longest contiguous state 2
segments

Longest Segment List:

(Brlef) annotations for the 116741000 116752000

116745000 116756000

top 5 Segments etc.. (give 10 longest from state 2)

Annotations:

Start: 116741000
End: 116752000
Overlaps with exon3 of the protein coding gene cMyc

Start: 116745000
End: 116756000
Overlaps with exon4 of the protein coding gene cMyc

Agenda
Homeweork-S-evervew
Connecting to a website

Moving data over established connections

Network vulnerabilities

Connecting to a website

Loading a website

What actually happens when we navigate to a URL (e.g.,
https://www.gs.washington.edu/index.htm) “?

AR \
D Internet /:I' - ’
Clients B

L-___Ii / GS Server

https://upload.wikimedia.org/wikipedia/commons/c/c9/Client-server-model.svg

https://www.gs.washington.edu/index.htm

Finding a website: DNS lookup

First, the computer has to figure out what/where
“www.gs.washington.edu/index.htm” actually means

This is like using someone’s name to get their house
address: converting something that's easier for humans
(our names) into something that’s easier for the system
(house numbers with street names and zip codes)

Finding a website: DNS lookup

To get that address, we have to query a DNS server
(provided by either your ISP or a third party like Google)

This returns an IP address, which browsers and routers

can understand | Dmimnsom
‘\@ Go to name server //Ej Name Server

\
\
\
T
\
\
\

i
L
e www.google.com i
550 D goog -l RS /@www.google.com — | ;
Browser >-
-] Resolver «@Go to name server __| Name Server
" (8)142.251.46.238 for google.com :
}
I
i
i

/@www.google.com \ .
s |)
ke google.co o5, . Authoritative

| Name Server
—(7)- 142.251.46.238

us Top Level Domain (TLD)

99999999999999999999

Establishing a connection: TCP handshake

Once we know where to go, we have to go and connect to
that IP address using the TCP 3-way handshake

Let’s connect! I'll 8
reessonsaring G (SN Soa v

messages starting SYN | Seq: 456

at 456

Got it! I'm ready for
message 457. Also

W (ax) ol masao
- - number my
[SYN] — messages starting

with 123

()

Great! I'm ready for/ °
message 124. 3)—[ACK | seq: 124 }—-

Establishing a connection: TLS handshake

Server

Finished

swos
ddl

ific
ServerHe lloDone

swoLL
S1L

For secure connections
(URLs starting with HTTPS),
we also have to authenticate
with the server so both client
and server can encrypt and
decrypt messages

Uses Diffie-Hellman!

Loading the website: HT TP requests

Finally, we can now send
encrypted messages to the
server so we can securely
make HTTP requests for
server resources like the
actual web page we want

https://mdn.github.io/shared-assets/images/diagrams/http/messages/response-headers.svg

Request

POST / HTTP/1.1

Host: example.com/listener
User-Agent: curl/8.6.0

Accept: */*

Content-Type: application/json
Content-Length: 345

{
"data": "ABC123"

}

¢ Request headers

¢——— Representation headers

Loading the website: HT TP requests

Request

Common HTTP requests

POST / HTTP/1.1
Host: example.com/listener

GET User-Agent: curl/8.6.0 ¢<——— Request headers
Accept: */*

Content-Type: application/json

3 ¢——— Representation headers
Content-Length: 345

D UT { "data": "ABC123"
DELETE

https://mdn.github.io/shared-assets/images/diagrams/http/messages/response-headers.svg

Moving data over established connections

Layers of connection

?Layers Now that we can send HTTP

of the OSI Model

requests, we can send these

e HTTP, FTP, IRC, SSH, DNS

7S Applcation
| requests down through several

A v
6. Presentation e SSL, SSH, IMAP, FTP, MPEG, JPEG

sosesion RN layers of connection

@ 4. Transport : i?i?t;;d nnnnnnn o)
S The OSI model is one such way to
3. Network S o Eses loMp

o conceptualize these layers, but
s nowadays we use the TCP/IP model

1. Physical
@ ys1Ga e Coax, Fiber, Wireless, Hubs, Repeaters

Sbme
https://s7280.pcdn.co/wp-content/uploads/2018/06/osi-model-7-layers-1.png

The OSI| model

. 7. Application

6. Presentation

5. Session

@ 1. Physical

Sbme
https://s7280.pcdn.co/wp-content/uploads/2018/06/osi-model-7-layers-1.png

e 7/Layers
|?of the OSI Model

e End User layer
e HTTP, FTP, IRC, SSH, DNS

e Syntax layer
e SSL, SSH, IMAP, FTP, MPEG, JPEG

e Synch & send to port
e API’s, Sockets, WinSock

e End-to-end connections
e TCP, UDP

e Packets
e P, ICMP, IPSec, IGMP

e Frames
e Ethernet, PPP, Switch, Bridge

e Physical structure
e Coax, Fiber, Wireless, Hubs, Repeaters

The Open Systems Interconnection
(OSI) model describes the layers of
connection needed for
communication between the client
and server

The OSI model: application layer

Understands what the server-side web application needs
from the client and encodes this information (e.g., into an
HTTP or FTP request)

Application Layer

Request content

©

Application Layer Return content in required format Website

https://www.imperva.com/learn/application-security/osi-model/

The OSI| model: presentation layer

Also known as the syntax layer; makes sure the data is
formatted and compressed correctly so the application
layer can understand what it has received

Presentation Layer

e *)|(*

Encryption Compression Translation

https://www.imperva.com/learn/application-security/osi-model/

The OSI| model: session layer

Manages and controls the connection between client and
server as “sessions’

Session Layer

DR

Session of communication

https://www.imperva.com/learn/application-security/osi-model/

The OSI model: transport layer

Makes sure data is transported correctly and completely
by chunking up the data client-side and reassembling it
server-side, fixing errors and replacing missing chunks

TCP lives here

Transport Layer

= 25 S

Segmentation Transport Reassembly

The OSI| model: network layer

The network layer is responsible for routing packets to the
right place and finding the optimal path to get there

IP lives here

Network Layer

L.

Packets creation Transport Packets assembly

The OSI model: data link layer

The data link layer ensures that data is sent to the right
computer on the server-side local network utilizing info like
MAC addresses (unique hardware 1D)

Data Link Layer

: Transfer frames
Frame creation Transport
P between net

https://www.imperva.com/learn/application-security/osi-model/

The OSI| model: physical layer

The actual physical connection between the client and the
server lives inside of physical wires! Data encoded as bits
are sent as electrical signals over these wires

Physical Layer

s 0010100010 —— |7

Sending cable Bitstream Receiving cable

https://www.imperva.com/learn/application-security/osi-model/

What does the data look like?
You can think of the actual application data as a present to
be opened

The data gets iteratively wrapped in layers of information
as it traverses through the OSI layers on the client side

Then gets iteratively unwrapped server-side

What does the data look like?

Vve Ca” these OSI Model Data Encapsulation & Decapsulation
wrapped data = L._.-l
“packets” =
Info for each layer is — =
added as headers = =
[DaaLink o owatink |
U =3 =

https://sectigostore.com/blog/how-osi-model-network-communication-layers-work/

Network vulnerabilities

Types of network vulnerabilities

When hosting a website or API, we must protect ourselves
from outside attacks

A couple broad categories of malicious behavior:

e [njection attacks
e Denial of service
e Man in the middle

Injection attacks

Injection attacks focus on affecting internal databases by
sending data that looks valid but may cause unintended

consequences

Depends on the specific implementation of the server

Injection attacks

Benign request:

POST /update-email import sqlite3
Content-Type: application/json

def update_email(user_id, new_email):
conn = sqlite3.connect("users.db")

{ cursor = conn.cursor()

"user_id": "123",

"email®: "newemail@example.com" query = f"UPDATE users SET email = '{new_email}' WHERE id = {user_id};"
} cursor.execute(query) # @ Vulnerable to SQL injection!

conn.commit()
conn.close()

UPDATE users SET email = 'newemail@example.com' WHERE id = 123;

chatgpt.com

Injection attacks

Malicious request:

POST /update-email import sqlite3

Content-Type: application/json
def update_email(user_id, new_email):
{ conn = sqlite3.connect("users.db")

cursor = conn.cursor()
"user_id": "123; DROP TABLE users; ——",

" . n, n "
email": "hacker@example.com query = f"UPDATE users SET email = '{new_email}' WHERE id = {user_id};"
} cursor.execute(query) # @ Vulnerable to SQL injection!

conn.commit()
conn.close()

UPDATE users SET email = 'hacker@example.com' WHERE id = 123; DROP TABLE users; ——';

chatgpt.com

Injection attacks

Malicious request handled correctly:

POST /update-email import sqlite3

Content-Type: application/json
def update_email(user_id, new_email):

conn = sqlite3.connect("users.db")

{ cursor = conn.cursor()
"user_id": "123; DROP TABLE users; —-",
"email": "hacker@example.com" query = "UPDATE users SET email = ? WHERE id = ?;"
} cursor.execute(query, (new_email, user_id)) # 8 Safe from SOL injection!

conn.commit()
conn.close()

UPDATE users SET email = 'hacker@example.com' WHERE id = 123;

chatgpt.com

Denial of service

Denial of service attacks focus
e _ _
§ on overwhelming a system with

('___) = malicious requests that prevent

é — ~ the server from responding to

Open port. Waiting for ACK
Open port. Waiting for ACK

e |@gitimate requests

Open port. Waiting for ACK

» §Q Comections One such way to do this is with
a “syn flood”

https://www.imperva.com/learn/wp-content/uploads/sites/13/2019/01/syn-flood.jpg

Distributed denial of service

GitHub Survived the Biggest DDoS Attack Ever Recorded

On Wednesday, a 1.3Tbps DDoS$ attack pummeled GitHub for 15-20 minutes. Here's how it stayed online.

A DDOS attack is a DOS attack from many parallel
sources at once

Servers can employ tactics including rate limiting and the
blocking of known botnet IP addresses

https://www.wired.com/story/github-ddos-memcached/

Man in the middle

MITM attacks take advantage of unencrypted data transfer

Broken Connection
I
2 N
N 7 I
w— —
Client Server

—

A\ 4

N

Man in the Middle Attack

https://www.cloudpanel.io/blog/what-is-man-in-the-middle-attack/

Man in the middle: example

Connecting to a free Wi-Fi network

e The network could be set up such that all network

traffic can be read directly POST /o
e So, if you log into a bank account, cnenree: smmscationsszon
you might send your password in U eermanets aticetzs,

"password": "supersecurepassword"

plain text (e.g., through an HTTP }
request) for the attacker to simply read

Man in the middle

The biggest protection against this is enforcing HTTPS
connections

e Use the TLS handshake to exchange SSL certificate
(which a well-known third party basically signs to say
this is a legitimate certificate) and public/secret keys

e Now, even if traffic is spied on, it looks scrambled and
can't be used when read: T — — —"w"=—"—"

8G5QtZoD3TqKLVIgF+Z]2w==

Office hours

Reminder:

Homework 9 is due Sunday, March 16th at 11:59pm!

