
Genome 540 full lecture
March 11th, 2025

Joe Min



Agenda

Homework 9 overview

Connecting to a website

Moving data over established connections

Network vulnerabilities



Homework 9



Homework 9

Part 1: Implement a 2-state HMM with empirically-derived 
parameters where the states correspond to evolutionarily 
conserved or neutral regions 

Part 2: Use your HMM to find the Viterbi parse for a 
3-sequence alignment of dog, mouse, and human 
genomic sequences 



Part 1: empirically-derived parameters

State 1: neutrally evolving

● Using the provided list of emission counts 
from a large set of ancient repeat sequences, 
calculate emission probabilities
○ Column 1 is human
○ Column 2 is dog
○ Column 3 is mouse



Part 1: empirically-derived parameters

State 1: neutrally evolving

● For each emission, count the observed 
symbol then divide that by the total counts
○ E.g., for ‘AAA’, this would be:

10,222,095 / TOTAL

● These are your emission probabilities for the 
neutral state of your HMM



Part 1: empirically-derived parameters

State 2: evolutionarily conserved

● Do the same thing but using counts from a 
3-sequence alignment from putative 
functional sites

● Emission symbols corresponding with 
conservation (e.g., ‘AAA’ or ‘CCC’) should 
have higher probabilities here compared to 
their probabilities in State 1



Emission probabilities

● Calculated using counts

Transition probabilities

Part 1: Making the initial HMM

State 1 is neutral

State 2 is conserved

Initiation probabilities

● 𝜋₁: 0.95
● 𝜋₂: 0.05

to State 1 to State 2

From State 1 a₁₁ = 0.95 a₁₂ = 0.05

From State 2 a₂₁ = 0.10 a₂₂ = 0.90



Part 2: using the HMM
b₁(T--) b₁(G--)

a₂₂ = 0.90

b₁(CC-)

b₂(T--) b₂(G--) b₂(CC-)

a₁₁ = 0.95

a₂₁
 = 

0.1
0a₁₂ = .05

𝜋₁ = 0.95

𝜋₂ = 0.05

TGC
- - C
- - -

…



Part 2: the Viterbi parse

Now, using dynamic programming, determine the highest 
probability state sequence for the observed alignment



Part 2: using the HMM
b₁(T--) b₁(G--)

a₂₂ = 0.90

b₁(CC-)

b₂(T--) b₂(G--) b₂(CC-)

a₁₁ = 0.95

a₂₁
 = 

0.1
0a₁₂ = .05

𝜋₁ = 0.95

𝜋₂ = 0.05

TGC
- - C
- - -

…



Part 2: using the HMM
b₁(T--) b₁(G--)

a₂₂ = 0.90

b₁(CC-)

b₂(T--) b₂(G--) b₂(CC-)

a₁₁ = 0.95

a₂₁
 = 

0.1
0a₁₂ = .05

𝜋₁ = 0.95

𝜋₂ = 0.05

…

pos 1



Part 2: using the HMM
b₁(T--) b₁(G--)

a₂₂ = 0.90

b₁(CC-)

b₂(T--) b₂(G--) b₂(CC-)

a₁₁ = 0.95

a₂₁
 = 

0.1
0a₁₂ = .05

𝜋₁ = 0.95

𝜋₂ = 0.05

…

pos 2



Part 2: using the HMM
b₁(T--) b₁(G--)

a₂₂ = 0.90

b₁(CC-)

b₂(T--) b₂(G--) b₂(CC-)

a₁₁ = 0.95

a₂₁
 = 

0.1
0a₁₂ = .05

𝜋₁ = 0.95

𝜋₂ = 0.05

…

pos 3



Homework 9: output format

State histogram that counts how many times we were in 
each state

● E.g., if the state sequence is “1 1 2 1 1”, we should 
report:

State Histogram
1=4

2=1



Homework 9: output format

Segment histogram that counts how many contiguous 
segments of the same state we have

● E.g., if the state sequence is “1 1 2 1 1”, we should 
report:

State Histogram
1=4

2=1



Homework 9: output format

Segment histogram that counts how many contiguous 
segments of the same state we have

● E.g., if the state sequence is “1 1 2 1 1”, we should 
report:

Segment Histogram
1=2

2=1



Homework 9: output format

Segment histogram that counts how many contiguous 
segments of the same state we have

● E.g., if the state sequence is “1 1 2 1 1”, we should 
report:

Segment Histogram
1=2

2=1



Homework 9: output format

Initial state probabilities and transition 
probabilities (the ones given at the 
beginning)

Emission probabilities for all observed 
symbols in alphabetical order

● First for state 1, then for state 2



Homework 9: output format

Coordinates of the top 10 longest contiguous state 2 
segments

(Brief) annotations for the
top 5 segments



Agenda

Homework 9 overview

Connecting to a website

Moving data over established connections

Network vulnerabilities



Connecting to a website



Loading a website

What actually happens when we navigate to a URL (e.g., 
https://www.gs.washington.edu/index.htm) ?

https://upload.wikimedia.org/wikipedia/commons/c/c9/Client-server-model.svg

GS Server

https://www.gs.washington.edu/index.htm


Finding a website: DNS lookup

First, the computer has to figure out what/where 
“www.gs.washington.edu/index.htm” actually means

This is like using someone’s name to get their house 
address: converting something that’s easier for humans 
(our names) into something that’s easier for the system 
(house numbers with street names and zip codes)



To get that address, we have to query a DNS server 
(provided by either your ISP or a third party like Google)

This returns an IP address, which browsers and routers 
can understand

Finding a website: DNS lookup

https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fbucketeer-e05bbc8
4-baa3-437e-9518-adb32be77984.s3.amazonaws.com%2Fpublic%2Fimages%2F5dd6a922-eea7-49b3-aa1a-b1e21
793a36a_1999x908.png



Establishing a connection: TCP handshake

Once we know where to go, we have to go and connect to 
that IP address using the TCP 3-way handshake

https://blog.pcarleton.com/images/TCP-3-way.png



Establishing a connection: TLS handshake

For secure connections 
(URLs starting with HTTPS), 
we also have to authenticate 
with the server so both client 
and server can encrypt and 
decrypt messages

Uses Diffie-Hellman!
https://cf-assets.www.cloudflare.com/slt3lc6tev37/5aYOr5erfyNBq20X5djTco/3c859532c91f25d961b2884bf521c1eb/tls-ssl-handshake.png



Finally, we can now send 
encrypted messages to the 
server so we can securely 
make HTTP requests for 
server resources like the 
actual web page we want

Loading the website: HTTP requests

https://mdn.github.io/shared-assets/images/diagrams/http/messages/response-headers.svg



Common HTTP requests

● GET
● POST
● PUT
● DELETE

Loading the website: HTTP requests

https://mdn.github.io/shared-assets/images/diagrams/http/messages/response-headers.svg



Moving data over established connections



Layers of connection

Now that we can send HTTP 
requests, we can send these 
requests down through several 
layers of connection

The OSI model is one such way to 
conceptualize these layers, but 
nowadays we use the TCP/IP model

https://s7280.pcdn.co/wp-content/uploads/2018/06/osi-model-7-layers-1.png



The OSI model

The Open Systems Interconnection 
(OSI) model describes the layers of 
connection needed for 
communication between the client 
and server

https://s7280.pcdn.co/wp-content/uploads/2018/06/osi-model-7-layers-1.png



The OSI model: application layer

Understands what the server-side web application needs 
from the client and encodes this information (e.g., into an 
HTTP or FTP request)

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: presentation layer

Also known as the syntax layer; makes sure the data is 
formatted and compressed correctly so the application 
layer can understand what it has received

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: session layer

Manages and controls the connection between client and 
server as “sessions”

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: transport layer

Makes sure data is transported correctly and completely 
by chunking up the data client-side and reassembling it 
server-side, fixing errors and replacing missing chunks

TCP lives here

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: network layer

The network layer is responsible for routing packets to the 
right place and finding the optimal path to get there

IP lives here

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: data link layer

The data link layer ensures that data is sent to the right 
computer on the server-side local network utilizing info like 
MAC addresses (unique hardware ID)

https://www.imperva.com/learn/application-security/osi-model/



The OSI model: physical layer

The actual physical connection between the client and the 
server lives inside of physical wires! Data encoded as bits 
are sent as electrical signals over these wires

https://www.imperva.com/learn/application-security/osi-model/



What does the data look like?

You can think of the actual application data as a present to 
be opened

The data gets iteratively wrapped in layers of information 
as it traverses through the OSI layers on the client side

Then gets iteratively unwrapped server-side



What does the data look like?

We call these 
wrapped data 
“packets”

Info for each layer is 
added as headers

https://sectigostore.com/blog/how-osi-model-network-communication-layers-work/



Network vulnerabilities



Types of network vulnerabilities

When hosting a website or API, we must protect ourselves 
from outside attacks

A couple broad categories of malicious behavior:

● Injection attacks
● Denial of service
● Man in the middle



Injection attacks

Injection attacks focus on affecting internal databases by 
sending data that looks valid but may cause unintended 
consequences

Depends on the specific implementation of the server



Injection attacks

Benign request:

chatgpt.com



Injection attacks

Malicious request:

chatgpt.com



Injection attacks

Malicious request handled correctly:

chatgpt.com



Denial of service

https://www.imperva.com/learn/wp-content/uploads/sites/13/2019/01/syn-flood.jpg

Denial of service attacks focus 
on overwhelming a system with 
malicious requests that prevent 
the server from responding to 
legitimate requests

One such way to do this is with 
a “syn flood”



Distributed denial of service

A DDOS attack is a DOS attack from many parallel 
sources at once

Servers can employ tactics including rate limiting and the 
blocking of known botnet IP addresses
https://www.wired.com/story/github-ddos-memcached/



Man in the middle

MITM attacks take advantage of unencrypted data transfer

https://www.cloudpanel.io/blog/what-is-man-in-the-middle-attack/



Man in the middle: example

Connecting to a free Wi-Fi network

● The network could be set up such that all network 
traffic can be read directly

● So, if you log into a bank account,
you might send your password in
plain text (e.g., through an HTTP
request) for the attacker to simply read

chatgpt.com



Man in the middle

The biggest protection against this is enforcing HTTPS 
connections

● Use the TLS handshake to exchange SSL certificate 
(which a well-known third party basically signs to say 
this is a legitimate certificate) and public/secret keys

● Now, even if traffic is spied on, it looks scrambled and 
can’t be used when read:

chatgpt.com



Office hours

Reminder:

Homework 9 is due Sunday, March 16th at 11:59pm!


