
Genome 540 discussion
March 6th, 2025

Joe Min



Agenda

A short history of programming languages

Microservice architecture in web applications



A short history of programming languages



General purpose programming languages

What we know and love

Used for making:

● Data analysis pipelines
● Websites
● Machine learning models

https://cdn.mycplus.com/mycplus/wp-content/uploads/2009/02/programming-languages.jpg



1804 (!!): Joseph Marie Jacquard

Textiles could be woven into
repeatable patterns using
punch cards

Holes in the cards influence
the loom mechanically

How we got here: punch cards

https://www.mingei-project.eu/2020/04/02/the-story-of-jacquard-weaving/
https://en.wikipedia.org/wiki/Jacquard_machine

https://www.mingei-project.eu/2020/04/02/the-story-of-jacquard-weaving/


How we got here: punch cards

First described in 1837, by 
Charles Babbage

Similar punch card concept

“Memory” of 1000 numbers of 
up to 40 digits (~17kb)

Steam powered???

https://en.wikipedia.org/wiki/Analytical_engine#/media/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg



How we got here: punch cards

https://blogs.bodleian.ox.ac.uk/adalovelace/2018/07/26/ada-lovelace-and-the-analytical-engine/
https://en.wikipedia.org/wiki/Analytical_engine

First “program” was made by Ada Lovelace to calculate the 
Bernoulli numbers



How we got here: machine code

1945: John Mauchly and 
J. Presper Eckert 
introduce the first general 
purpose electronic 
computer, Electronic 
Numerical Integrator And 
Computer (ENIAC)

All binary instructions
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg



How we got here: machine code

ENIAC is basically a set 
of pre-programmed 
functional units wired up 
to each other

E.g., if you wanted to take 
a product after a sum, 
you would run a wire from 
the multiplier to the adder

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg



How we got here: assembly code

In 1951, the UNIVAC I 
(Universal Automatic 
Computer I) came on the 
scene

Used assembly instead of 
raw binary instructions

https://en.wikipedia.org/wiki/UNIVAC#/media/File:Univac_I_Census_dedication.jpg



How we got here: assembly code

In 1951, the UNIVAC I 
(Universal Automatic 
Computer I) came on the 
scene

Used assembly instead of 
raw binary instructions

https://en.wikipedia.org/wiki/Assembly_language#/media/File:Motorola_6800_Assembly_Language.png



How we got here: human readable code

At the Eckert–Mauchly Computer Corporation, Grace 
Hopper pushed for human-readable programming 
languages, eventually leading to FLOW-MATIC in 1955

This was the first English-
like programming language

https://en.wikipedia.org/wiki/FLOW-MATIC



How we got here: high-level languages

Fortran (FORTRAN) first compiled 
correctly in 1958

Developed at IBM by a team led by 
John W. Backus

Kicked off the era of high-level 
programming languages 

https://en.wikipedia.org/wiki/Fortran#/media/File:Algol&Fortran_Family_By_Skippppp.svg



Microservice architecture in web applications



First, an aside

This blog post was published in 2014 but it holds true to 
this day over 10 years later

https://www.stilldrinking.org/programming-sucks



First, an aside

This blog post was published in 2014 but it holds true to 
this day over 10 years later

https://www.stilldrinking.org/programming-sucks



Giant, monolithic code is bad

Imagine building an online store. We need:

● User management (registration; logging in; account 
details)

● Product catalog (item names, price, and availability)
● Orders (shopping cart, payments)

In general all relevant information for these will live in 
some database (e.g., a SQL database)



Giant, monolithic code is bad

Consider a user logging in, scrolling through the catalog, 
and adding something to their cart. This requires:

● Securely authenticating the user with their password 
against the database

● Pulling images and prices for catalog items from the 
database

● Updating the user’s cart in the database



Giant, monolithic code is bad

If a single part experiences an error, the whole application 
fails because it’s basically a single copy of a running 
program



Giant, monolithic code is bad

If a single part experiences an error, the whole application 
fails because it’s basically a single copy of a running 
program

User management ✅

Product catalog ✅

Orders ❎

Database ✅



Giant, monolithic code is bad

If a single part experiences an error, the whole application 
fails because it’s basically a single copy of a running 
program

User management ✅

Product catalog ✅

Orders ❎

Database ✅



Giant, monolithic code is bad

We could scale out, but each additional copy is huge 

User management

Product catalog

Orders

Database

User management

Product catalog

Orders

Database

User management

Product catalog

Orders

Database



Small microservices can be better

If, instead, we split this into many different programs 
running separately, even if one service goes down, all 
other functionality is maintained!

✅ User 
management 

✅ Product 
catalog

❎ Orders 

✅ Database



Small microservices can be better

We can also scale out only the services that need to be 
scaled out (e.g., the most used)

User 
management 

Product 
catalog

Orders 

Database

Orders 

Product 
catalog

Database
DatabaseProduct 

catalogProduct 
catalog



Office hours

Reminder:

Homework 8 is due Sunday, March 9th at 11:59pm!


