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A short history of programming languages



General purpose programming languages

What we know and love

Used for making:

● Data analysis pipelines
● Websites
● Machine learning models

https://cdn.mycplus.com/mycplus/wp-content/uploads/2009/02/programming-languages.jpg



1804 (!!): Joseph Marie Jacquard

Textiles could be woven into
repeatable patterns using
punch cards

Holes in the cards influence
the loom mechanically

How we got here: punch cards

https://www.mingei-project.eu/2020/04/02/the-story-of-jacquard-weaving/
https://en.wikipedia.org/wiki/Jacquard_machine

https://www.mingei-project.eu/2020/04/02/the-story-of-jacquard-weaving/


How we got here: punch cards

First described in 1837, by 
Charles Babbage

Similar punch card concept

“Memory” of 1000 numbers of 
up to 40 digits (~17kb)

Steam powered???

https://en.wikipedia.org/wiki/Analytical_engine#/media/File:Babbages_Analytical_Engine,_1834-1871._(9660574685).jpg



How we got here: punch cards

https://blogs.bodleian.ox.ac.uk/adalovelace/2018/07/26/ada-lovelace-and-the-analytical-engine/
https://en.wikipedia.org/wiki/Analytical_engine

First “program” was made by Ada Lovelace to calculate the 
Bernoulli numbers



How we got here: machine code

1945: John Mauchly and 
J. Presper Eckert 
introduce the first general 
purpose electronic 
computer, Electronic 
Numerical Integrator And 
Computer (ENIAC)

All binary instructions
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg



How we got here: machine code

ENIAC is basically a set 
of pre-programmed 
functional units wired up 
to each other

E.g., if you wanted to take 
a product after a sum, 
you would run a wire from 
the multiplier to the adder

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg



How we got here: assembly code

In 1951, the UNIVAC I 
(Universal Automatic 
Computer I) came on the 
scene

Used assembly instead of 
raw binary instructions

https://en.wikipedia.org/wiki/UNIVAC#/media/File:Univac_I_Census_dedication.jpg



How we got here: assembly code

In 1951, the UNIVAC I 
(Universal Automatic 
Computer I) came on the 
scene

Used assembly instead of 
raw binary instructions

https://en.wikipedia.org/wiki/Assembly_language#/media/File:Motorola_6800_Assembly_Language.png



How we got here: human readable code

At the Eckert–Mauchly Computer Corporation, Grace 
Hopper pushed for human-readable programming 
languages, eventually leading to FLOW-MATIC in 1955

This was the first English-
like programming language

https://en.wikipedia.org/wiki/FLOW-MATIC



How we got here: high-level languages

Fortran (FORTRAN) first compiled 
correctly in 1958

Developed at IBM by a team led by 
John W. Backus

Kicked off the era of high-level 
programming languages 

https://en.wikipedia.org/wiki/Fortran#/media/File:Algol&Fortran_Family_By_Skippppp.svg



Microservice architecture in web applications



First, an aside

This blog post was published in 2014 but it holds true to 
this day over 10 years later

https://www.stilldrinking.org/programming-sucks
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Giant, monolithic code is bad

Imagine building an online store. We need:

● User management (registration; logging in; account 
details)

● Product catalog (item names, price, and availability)
● Orders (shopping cart, payments)

In general all relevant information for these will live in 
some database (e.g., a SQL database)



Giant, monolithic code is bad

Consider a user logging in, scrolling through the catalog, 
and adding something to their cart. This requires:

● Securely authenticating the user with their password 
against the database

● Pulling images and prices for catalog items from the 
database

● Updating the user’s cart in the database



Giant, monolithic code is bad

If a single part experiences an error, the whole application 
fails because it’s basically a single copy of a running 
program
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Giant, monolithic code is bad

We could scale out, but each additional copy is huge 

User management

Product catalog

Orders

Database

User management

Product catalog

Orders

Database

User management
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Small microservices can be better

If, instead, we split this into many different programs 
running separately, even if one service goes down, all 
other functionality is maintained!

✅ User 
management 

✅ Product 
catalog

❎ Orders 

✅ Database



Small microservices can be better

We can also scale out only the services that need to be 
scaled out (e.g., the most used)

User 
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catalog
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Product 
catalog
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Office hours

Reminder:

Homework 8 is due Sunday, March 9th at 11:59pm!


