Genome 540 discussion

March 6th, 2025
Joe Min

NNNNNNNNNNNNNNNNNNNNNN

Agenda

A short history of programming languages

Microservice architecture in web applications

A short history of programming languages

General purpose programming languages

What we know and love

Used for making:

e Data analysis pipelines
e \Websites
e Machine learning models

How we got here: punch cards

1804 (!'): Joseph Marie Jacquard

Textiles could be woven into
repeatable patterns using
punch cards

Holes in the cards influence
the loom mechanically

https://www.mingei-project.eu/2020/04/02/the-s
https://en.wikipedia.org/wiki/Jacquard_machine

https://www.mingei-project.eu/2020/04/02/the-story-of-jacquard-weaving/

How we got here: punch cards

First described in 1837, by
Charles Babbage
Similar punch card concept

“Memory” of 1000 numbers of
up to 40 digits (~17kb)

Steam powered???

https://en.wikipedia.org/wiki/Analytical_engine#/media/File:Babbages_Analytical_Engine, 1834-1871._(9660574685).jpg

How we got here: punch cards

First “program” was made by Ada Lovelace to calculate t

L]
s —
Diagram for the computation by the Engine of the Numbers of Bernoulli, See Note G. (page 722 et seq)
q = s ol 4
B E o |
B ff |3 e v | ot 3 RS E R R« : 1
1’, ; 'g B |t b e s f R Pls|&|o|ofofefafs]s o o
" |3 |
-1 R LEEO0O000|oo| e
E {
l‘ﬁ 2
:Il 2 2 1
- : HEY
X ; ERTTal
=1 2 b Sagsadiay
& L saeedl !
- |
- 8 2
3
| | EE : ‘ ,
e o | 8,22 B, 5
¥ h
: LURN B TN PR L o f it A ey e B T HE ST NES ER U (T [P (S IS (P I o x
- |—1
B R 1
H
u WLV, Y 3
Loh .
! 2n2a-1 |
o
; ‘
. L {; . T,}
i | '
1 ‘
B e
vvvvvvvvv o | {ntmnsma)
. n-3 2
B[e [| b R | e ‘
Bl s ek o ‘ ‘ | .‘ | |
[(Sl { /e |

https://blogs.bodleian.ox.ac.uk/adalovelace/2018/07/26/ada-lovelace-and-the-analytical-engine/
https://en.wikipedia.org/wiki/Analytical_engine

ne

How we got here: machine code

1945: John Mauchly and
J. Presper Eckert
introduce the first general
purpose electronic
computer, Electronic

Numerical Integrator And L o g
Computer (ENIAC) i =

All binary instructions

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg

How we got here: machine code

ENIAC is basically a set
of pre-programmed
functional units wired up
to each other

E.g., if you wanted to take

/ENIKC

I ’ m e ; b \ THE WORLD"S FIRST/ ELECTRONCLARGE: SCALE.
a ro d u Ct afte r a S u e GENERAL- FlJRPOSE DIGTTAL, COMPUTER

you would run a wire from a :

the multiplier to the adder

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6c/ENIAC_Penn1.jpg/440px-ENIAC_Penn1.jpg

How we got here: assembly code

In 1951, the UNIVAC |
(Universal Automatic

d(F} - | BENNS .\ ter [) came on the
s | AN E N
~ " ‘% scene
& g, Used assembly instead of
= ‘ ‘ - . . .
~ = raw binary instructions

https://en.wikipedia.org/wiki/UNIVAC#/media/File:Univac_|_Census_dedication.jpg

How we got here: assembly code

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2
c000 ORG ROM+$0000 BEGIN MONITOR
C000 8E 00 70 START LDS #STACK
Khkhkhkkhkhkkhhhhkkkhhhh kbbb bbb rhhhhhhhhhhd
* FUNCTION: INITA - Initialize ACIA
* INPUT: none
* OUTPUT: none
* CALLS: none
* DESTROYS: acc A
0013 RESETA EQU %$00010011
0011 CTLREG EQU %$00010001
C003 86 13 INITA LDA A #RESETA RESET ACIA
C005 B7 80 04 STA A ACIA
Cc008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA
C00D 7E CO F1 JMP SIGNON GO TO START OF MONITOR
e e e e e e e e e e e e ok ok ke ok e ke ke ko ok ok ok ok ok ok ok ok ok ke ok e e e ke e ok
* FUNCTION: INCH - Input character
* INPUT: none
* OUTPUT: char in acc A
* DESTROYS: acc A
* CALLS: none
* DESCRIPTION: Gets 1 character from terminal
C010 B6 80 04 INCH LDA A ACIA GET STATUS
c013 47 ASR A SHIFT RDRF FLAG INTO CARRY
C014 24 FA BCC INCH RECIEVE NOT READY
C016 B6 80 05 LDA A ACIA+1 GET CHAR
C019 84 7F AND A #S$7F MASK PARITY
CO1B 7E CO 79 JMP OUTCH ECHO & RTS

https://en.wikipedia.org/wiki/Assembly_language#/media/File:Motorola_6800_Assembly_Language.png

In 1951, the UNIVAC |
Universal Automatic
Computer I) came on the
scene

Used assembly instead of
raw binary instructions

How we got here: human readable code

At the Eckert—Mauchly Computer Corporation, Grace
Hopper pushed for human-readable programming
languages, eventually leading to FLOW-MATIC in 1955

(0)

This was the first English-

like programming language &

(15)

https://en.wikipedia.org/wiki/FLOW-MATIC : 1?;

INPUT INVENTORY FILE-A PRICE FILE-B ; OUTPUT PRICED-INV FILE-C UNPRICED-INV
FILE-D ; HSP D .

COMPARE PRODUCT-NO (A) WITH PRODUCT-NO (B) ; IF GREATER GO TO OPERATION 10 ;
IF EQUAL GO TO OPERATION 5 ; OTHERWISE GO TO OPERATION 2 .

TRANSFER A TO D .

WRITE-ITEM D .

JUMP TO OPERATION 8 .

TRANSFER A TO C .

MOVE UNIT-PRICE (B) TO UNIT-PRICE (C) .

WRITE-ITEM C .

READ-ITEM A ; IF END OF DATA GO TO OPERATION 14 .

JUMP TO OPERATION 1 .

READ-ITEM B ; IF END OF DATA GO TO OPERATION 12 .

JUMP TO OPERATION 1 .

SET OPERATION 9 TO GO TO OPERATION 2 .

JUMP TO OPERATION 2 .

TEST PRODUCT-NO (B) AGAINST ; IF EQUAL GO TO OPERATION 16 ;
OTHERWISE GO TO OPERATION 15 .

REWIND B .

CLOSE-OUT FILES C ; D .

STOP . (END)

How we got here: high-level languages

2010’s

Fortran 08
2000's Fortran 03
Fortran 95
1990 Visual Basic
SS9 porgran 90
1980’s
Fortran 77
1970’s
Fortran IV
(1966)
BASIC
(1964)
1960’s

~—— Fortran IT

Modula-3
(1988)

Modula-2
(1978)

PL/1 (1964) —

c1 C++11
COBOL 2002
Cc99—
C++98
Delphi
(19955; Ada 95 COBOL 85
c89—
Ada C++
(1983) (" (1983)
c | Smalltalk
1972 1972
Pascal () ()
(1970)
Algol 68
pop, Simula 67
(1966) |
(TI;Y,
(1963) Simula,
(1962) COBOL
— Algﬁ)l 60 (1960)

Algol (1958)

[_ Fortran (1955) —J

Speedeoding (1953)

1950's

https://en.wikipedia.org/wiki/Fortran#/media/File:Algol&Fortran_Family_By_Skippppp.svg

FLOW-MATIC

(1955)

Fortran (FORTRAN) first compiled
correctly in 1958

Developed at IBM by a team led by
John W. Backus

Kicked off the era of high-level
programming languages

Microservice architecture in web applications

First, an aside

This blog post was published in 2014 but it holds true to
this day over 10 years later

All code is bad

Every programmer occasionally, when nobody’s home, turns off the lights, pours a glass
of scotch, puts on some light German electronica, and opens up a file on their computer.
It’s a different file for every programmer. Sometimes they wrote it, sometimes they
found it and knew they had to save it. They read over the lines, and weep at their beauty,
then the tears turn bitter as they remember the rest of the files and the inevitable
collapse of all that is good and true in the world.

This file is Good Code. It has sensible and consistent names for functions and
variables. It’s concise. It doesn’t do anything obviously stupid. It has never had to live in
the wild, or answer to a sales team. It does exactly one, mundane, specific thing, and it
does it well. It was written by a single person, and never touched by another. It reads
like poetry written by someone over thirty.

https://www.stilldrinking.org/programming-sucks

First, an aside

This blog post was published in 2014 but it holds true to
this day over 10 years later

Every programmer starts out writing some perfect little snowflake like this. Then
they’re told on Friday they need to have six hundred snowflakes written by Tuesday, so
they cheat a bit here and there and maybe copy a few snowflakes and try to stick them
together or they have to ask a coworker to work on one who melts it and then all the
programmers’ snowflakes get dumped together in some inscrutable shape and
somebody leans a Picasso on it because nobody wants to see the cat urine soaking into
all your broken snowflakes melting in the light of day. Next week, everybody shovels

more snow on it to keep the Picasso from falling over.

https://www.stilldrinking.org/programming-sucks

Giant, monolithic code is bad

Imagine building an online store. We need:

e User management (registration; logging in; account

details)
e Product catalog (item names, price, and availability)

e Orders (shopping cart, payments)

In general all relevant information for these will live in
some database (e.g., a SQL database)

Giant, monolithic code is bad

Consider a user logging in, scrolling through the catalog,
and adding something to their cart. This requires:

e Securely authenticating the user with their password
against the database

e Pulling images and prices for catalog items from the
database

e Updating the user’s cart in the database

Giant, monolithic code is bad

If a single part experiences an error, the whole application
fails because it's basically a single copy of a running
program

Giant, monolithic code is bad

If a single part experiences an error, the whole application
fails because it's basically a single copy of a running
program

User management
Product catalog
Orders

Database

Giant, monolithic code is bad

If a single part experiences an error, the whole application
fails because it's basically a single copy of a running
program

U ement

Giant, monolithic code is bad

We could scale out, but each additional copy is huge

User management
Product catalog
Orders

Database

User management
Product catalog
Orders

Database

User management
Product catalog
Orders

Database

Small microservices can be better

If, instead, we split this into many different programs
running separately, even if one service goes down, all
other functionality is maintained!

User

management

Product

catalog

Database

Small microservices can be better

We can also scale out only the services that need to be
scaled out (e.g., the most used)

User '
management Orders

a . |
¢ Product
catalog

Database

Office hours

Reminder:

Homework 8 is due Sunday, March 9th at 11:59pm!

