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Homework 8



Homework 8 overview

Part 1:

● Make a 2-state HMM with given initial parameters

Part 2:

● Use the Baum-Welch method to find improved 
parameters for the HMM



Homework 8: part 1



Making the initial HMM: definitions

𝜋i: initial probability of state i

aij: transition probability from state i to state j

bi(N): emission probability of nucleotide N
from state i

t: the position of emission for the given node

notation borrowed from the Shen tutorial (also on website)

emission at t

https://www.cs.cmu.edu/~roni/11661/2017_fall_assignments/shen_tutorial.pdf


Emission probabilities

Transition probabilities

Making the initial HMM

State 1 is AT-rich

State 2 is GC-rich

Initiation probabilities

● 𝜋₁: 0.996
● 𝜋₂: 0.004

to State 1 to State 2

From State 1 a₁₁ = 0.999 a₁₂ = 0.001

From State 2 a₂₁ = 0.01 a₂₂ = 0.99

A C G T

State 1 b₁(A) = 0.3 b₁(C) = 0.2 b₁(G) = 0.2 b₁(T) = 0.3

State 2 b₂(A) = 0.15 b₂(C) = 0.35 b₂(G) = 0.35 b₂(T) = 0.15



Visualizing the HMM

State 1
AT-rich

State 2
GC-rich

start
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Visualizing the HMM

State 1
AT-rich

State 2
GC-rich

a₁₁ = 0.999
a₁₂ = 0.001

a₂₁ = 0.01

a₂₂ = 0.99

start

𝜋₁ = 0.996 𝜋₂ = 0.004



Visualizing the HMM

State 1
AT-rich

State 2
GC-rich

observed sequence “TCG”

a₁₁ = 0.999
a₁₂ = 0.001

a₂₁ = 0.01

a₂₂ = 0.99

b₁(A) = 0.3 b₁(C) = 0.2

b₁(G) = 0.2 b₁(T) = 0.3

b₂(A) = 0.15 b₂(A) = 0.35

b₂(A) = 0.35 b₂(A) = 0.15

start

𝜋₁ = 0.996 𝜋₂ = 0.004



Linearized visualization for specific sequence
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observed sequence “TCG”
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Linearized visualization for specific sequence
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Linearized visualization for specific sequence

observed sequence “TCG”

𝜋₁ = 0.996

𝜋₂ = 0.004

b₁(T) = 0.15

b₂(T) = 0.3

a₁₁ = 0.999

a₁₂ = .001



Linearized visualization for specific sequence

observed sequence “TCG”

𝜋₁ = 0.996

𝜋₂ = 0.004

b₁(T) = 0.15 b₁(C) = 0.35

b₂(T) = 0.3 b₂(C) = 0.2

a₁₁ = 0.999

a₁₂ = .001



Linearized visualization for specific sequence
b₁(T) = 0.15 b₁(C) = 0.35

a₂₂ = 0.99

b₁(G) = 0.35

b₂(T) = 0.3 b₂(C) = 0.2 b₂(G) = 0.2

a₁₁ = 0.999

a₂₁
 = 

0.0
1a₁₂ = .001
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Linearized visualization for specific sequence
b₁(T) = 0.15 b₁(C) = 0.35

a₂₂ = 0.99
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Linearized visualization for specific sequence
b₁(T) = 0.15 b₁(C) = 0.35

a₂₂ = 0.99

b₁(G) = 0.35

b₂(T) = 0.3 b₂(C) = 0.2 b₂(G) = 0.2

a₁₁ = 0.999

a₂₁
 = 

0.0
1a₁₂ = .001

𝜋₁ = 0.996

𝜋₂ = 0.004

t = 2



Linearized visualization for specific sequence
b₁(T) = 0.15 b₁(C) = 0.35

a₂₂ = 0.99

b₁(G) = 0.35

b₂(T) = 0.3 b₂(C) = 0.2 b₂(G) = 0.2

a₁₁ = 0.999

a₂₁
 = 

0.0
1a₁₂ = .001

𝜋₁ = 0.996

𝜋₂ = 0.004

t = T = 3



Baum-Welch example

Baum-Welch will iteratively adjust parameters of the HMM 
to maximize the likelihood of the observed sequence

● First, calculate forward and backward variables using 
the forward/backward algorithm

● Using these values, update the HMM’s:
○ Emission probabilities
○ Transition probabilities



The forward part

Calculating forward values for all nodes is what we’re used 
to! But with a twist:

● Use dynamic programming to find highest weight 
parent and weight of highest-weight path ending at 
each node

● The twist! For downstream reasons, keep things in the 
normal probability space (how??)



The forward part: more definitions

t: the observation position for a given node

𝛼t(i): the highest probability of the partial observed 
sequence (i.e., observations from t=1 to t=t) for the 
post-emission node for state i at time t (unscaled)

ct: the scaling factor at time t

𝛼*t(i): the scaled 𝛼t(i)

emission at t

post-emission 
node

Notation discrepancies with the tutorial:
● ät(i) = 𝛼t(i)    ← redefinition from tutorial (eq10)
● ât(i) = 𝛼*t(i)   ← no “alpha hat” in slides, so

use 𝛼* instead



The forward part: scaling

ct: the scaling factor at time t
● Note: independent of state! Because:

ct  =

That is, ct is the inverse of the sum of the 𝛼t values across 
all states at time t

1

∑ᵢ  𝛼t(i)



The forward part: more definitions

t: the observation position for a given node

𝛼t(i): the highest probability of the partial observed 
sequence (i.e., observations from t=1 to t=t) for the 
post-emission node for state i at time t (unscaled)

ct: the scaling factor at time t

𝛼*t(i): ct𝛼t(i) (scaled probability)

emission at t

post-emission 
node

Notation discrepancies with the tutorial:
● ät(i) = 𝛼t(i)    ← redefinition from tutorial (eq10)
● ât(i) = 𝛼*t(i)   ← no “alpha hat” in slides, so

use 𝛼* instead



The forward part: calculating t=1

observed sequence “TCG”

b₁(T) = 0.15

𝛼₁(1)  =  𝜋₁ * b₁(T)  =  0.996 * 0.15  =  0.1494

𝜋₁ = 0.996

𝜋₂ = 0.004



The forward part: calculating t=1

observed sequence “TCG”

b₁(T) = 0.15

b₂(T) = 0.3

𝛼₁(2)  =  𝜋₂ * b₂(T) =  0.004 * 0.3  =  0.0012

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼₁(1)  =  𝜋₁ * b₁(T)  =  0.996 * 0.15  =  0.1494



The forward part: calculating t=1

observed sequence “TCG”

b₁(T) = 0.15

b₂(T) = 0.3

c₁  =  1 / ( 𝛼₁(1)+𝛼₁(2) )  =  1 / (0.1506)  =  6.64

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼₁(2)  =  𝜋₂ * b₂(T) =  0.004 * 0.3  =  0.0012

𝛼₁(1)  =  𝜋₁ * b₁(T)  =  0.996 * 0.15  =  0.1494



The forward part: calculating t=1

observed sequence “TCG”

b₁(T) = 0.15

b₂(T) = 0.3

c₁  =  1 / ( 𝛼₁(1)+𝛼₁(2) )  =  1 / (0.1506)  =  6.64

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼₁(2)  =  𝜋₂ * b₂(T) =  0.004 * 0.3  =  0.0012

𝛼₁(1)  =  𝜋₁ * b₁(T)  =  0.996 * 0.15  =  0.1494

𝛼*₁(1)  =  c₁ * 𝛼₁(1)  =  0.992

𝛼*₁(2)  =  c₁ * 𝛼₁(2)  =  0.00797



The forward part: t>1

Past t=1, we have to perform a sum to generate new 
values for 𝛼t(i):

𝛼t+1(j) = [  ∑ᵢ 𝛼t(i)*aij  ] * bj(N+1)

This is the cumulative probability of all paths ending at 
state j at time t+1 given the set of observed nucleotides



The forward part: t>1

observed sequence “TCG”

𝜋₁ = 0.996

𝜋₂ = 0.004

a₁₁ = 0.999

a₂₁
 = 

0.0
1

b₁(C) = 0.35

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

𝛼₂(1)   =   sum( a₁₁ * 𝛼₁*(1) , a₂₁ * 𝛼₁*(2)) * b₁(C)
           =   sum( 0.9999 * 0.992 , 0.01 * 0.00797 ) * 0.35
           =   0.992 * 0.35
           =   0.347

c₁  =  6.64



The forward part: t>1

observed sequence “TCG”

𝜋₁ = 0.996

𝜋₂ = 0.004

a₁₁ = 0.999

a₂₁
 = 

0.0
1

b₁(C) = 0.35

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

𝛼₂(1)   =   0.347

c₁  =  6.64



The forward part: t>1

b₂(C) = 0.2

a₁₂ = 0.001

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

c₁  =  6.64

observed sequence “TCG”

a₂₂ = 0.99

We can calculate 𝛼₂(2) the same as 𝛼₂(1)

Then, we can calculate c₂

Which will allow us to calculate 𝛼*₂(1) and 𝛼*₂(1)

Continue this procedure until we reach the end!

𝛼₂(1)   =   0.347



The forward part: t>1

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

c₁  =  6.64

observed sequence “TCG”

𝛼₂(2)  =  ((0.00797 * 0.99)+(.992*.001)) * 0.2  =  0.0018

a₂₂ = 0.99

𝛼₂(1)   =   0.347

a₁₂ = 0.001



The forward part: t>1

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

c₁  =  6.64

observed sequence “TCG”

𝛼₂(2)  =  0.0018

a₂₂ = 0.99

𝛼₂(1)   =   0.347

c₂  =  1 / ( 𝛼₂(1)+𝛼₂(2) )  =  1 / (0.3488)  =  2.87



The forward part: t>1

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

c₁  =  6.64

observed sequence “TCG”

a₂₂ = 0.99

c₂  =  2.87

𝛼*₂(1)   =   2.87 * 0.347 = 0.996

𝛼*₂(2) = 2.87 * 0.0018 = 0.00517



The forward part: t>1

𝜋₁ = 0.996

𝜋₂ = 0.004

𝛼*₁(2)  =  0.00797

𝛼*₁(1)  =  0.992

c₁  =  6.64

observed sequence “TCG”

a₂₂ = 0.99

c₂  =  2.87

𝛼*₂(1)  =  0.996

𝛼*₂(2)  =  0.00517

𝛼*𖾔(1)  =  0.994

𝛼*𖾔(2)  =  
0.00611

c𖾔  =  2.85



The forward part: summary from tutorial

https://www.cs.cmu.edu/~roni/11661/2017_fall_assignments/shen_tutorial.pdf

Notation discrepancies with the tutorial:
● ät(i) = 𝛼t(i)    ← redefinition from tutorial (eq10)
● ât(i) = 𝛼*t(i)   ← no “alpha hat” in slides, so

use 𝛼* instead



The forward part: summary from tutorial

also note we can prove that:

 

Notation discrepancies with the tutorial:
● ät(i) = 𝛼t(i)    ← redefinition from tutorial (eq10)
● ât(i) = 𝛼*t(i)   ← no “alpha hat” in slides, so

use 𝛼* instead



The backward part

Similar to the forward part, but slightly different because of 
the ordering of the edges

Also, we get to reuse our forward-computed ct values!

Additionally, initial probabilities are 𝜋₁ = 𝜋₂ = 1 because 
from post-emission nodes where t=T (the end), the only 
possible edge is to the end node



The backward part: more definitions

βt(i): the highest probability of the partial
observed sequence (this time, observations
from t=t to t=T) for the post-emission node for
state i at time t (unscaled)

β*t(i): the scaled version of βt(i)

● Defined as: ct*βt(i)

emission at t

post-emission 
node

Notation discrepancies with the tutorial:
● B^t(i) = β*t(i)   ← no “beta hat” in slides, so

use β* instead



The backward part: calculating β*𖾔(i) 

For t = T:

● βT(i) = 1
● β*T(i) = cT*βT(i) = cT

For t < T, βt(i):

● βt(i) = ∑ (aij)(bj)(β*t+1(j))
● β*t(i) = ct*βt(i)

http://bozeman.genome.washington.edu/compbio/mbt599_2024/shen_tutorial.pdf

Notation discrepancies with the tutorial:
● B^t(i) = β*t(i)   ← no “beta hat” in slides, so

use β* instead



First, reverse the graph:

The backward part

same direction of increasing t →

c₁  =  6.64 c₂  =  2.87 c𖾔  =  2.85



The backward part: t=T

𝜋₁ = 1

𝜋₂ = 1

c𖾔  =  2.85

β𖾔(1) = 1

β𖾔(2) = 1

β*𖾔(2)  =  c𖾔 * β𖾔(2)  =  2.85*1  =  
2.85

β*𖾔(1)  =  c𖾔 * β𖾔(1)  =  2.85*1  =  
2.85



The backward part: t<T

c𖾔  =  2.85

b₁(G) = 0.35

b₂(G) = 0.2

β*𖾔(1)  =  2.85

β*𖾔(2)  =  2.85



The backward part: t<T

c₂  =  2.87 c𖾔  =  2.85

β*𖾔(1)  =  2.85

β*𖾔(2)  =  2.85

β₂(2) =  β*𖾔(1) * b₁(G) * a₁₁ + β*𖾔(2) * b₂(G) * a₁₂ = 
0.997

b₁(G) = 0.35

b₂(G) = 0.2

a₁₁ = 0.999

a₁₂ = 0.001



The backward part: t<T

c₂  =  2.87 c𖾔  =  2.85

β*𖾔(1)  =  2.85

β*𖾔(2)  =  2.85

β₂(2) = 0.997

b₁(G) = 0.35

b₂(G) = 0.2

a₁₁ = 0.999

a₁₂ = 0.001

β*₂(2) = c₂ * β₂(2) = 2.87 * 0.997 = 2.86



The backward part: t<T

c₂  =  2.87 c𖾔  =  2.85

β*𖾔(1)  =  2.85

β*𖾔(2)  =  2.85

β₂(2) = 0.997

b₁(G) = 0.35

b₂(G) = 0.2

a₁₁ = 0.999

a₁₂ = 0.001

β*₂(2) = c₂ * β₂(2) = 2.87 * 0.997 = 2.86

…and so on!

From here, you can keep traversing through the 
backwards path until you reach the start (not 
shown here)



Homework 8: part 2



More variable definitions: unscaled

P(O | λ): Total probability of the observed sequence O 
given the model λ



More variable definitions: unscaled

𝛾t(i): the probability of being in state i at time t given the 
observed sequence O and the model λ

Somewhat intuitively, summing this term over all t is the 
expected number of times we are ever in state i



More variable definitions: unscaled

𝜉t(i, j): the probability of being in state i at time t and state 
j at time t+1 given the observed sequence O and the 
model λ

Summing this term over all t (except T) is the expected 
number of times we transition from state i to state j



Baum-Welch parameter updates: unscaled

To calculate new parameters, you simply follow:

You can just keep alternating between this and the 
forward/backward calculations until the parameters 
converge!



Baum-Welch SCALED

The equations on the following slides basically just plug in 
the definitions we’ve seen for forward and backward 
variables, allowing us to use our newly computed scaled 
variables for the parameter update step



Baum-Welch SCALED

Log likelihood:

Parameter updates:



Office hours

Reminder:

Homework 8 is due Sunday, March 9th at 11:59pm!

Also remember:

Don’t round decimal values until the very end! This will 
affect all your calculations, especially here when dealing 
with a lot of decimal products


