
Genome 540 discussion
February 27th, 2025

Joe Min



Agenda

Data storage parallelization

Local computation parallelization

Server-scale computation parallelization



Data storage parallelization



Centralized data storage does not scale

Consider a sign-in table at an academic conference for 
100 total people

If we have one sheet with the name of all registered 
participants on it, we can check for each person’s name by 
running down the list and checking them off

The longest someone will have to wait is for 99 other 
people to check in (maybe not too bad)



Centralized data storage does not scale

Now consider a larger conference of 10,000 people

Using one sign-in table, someone might wait for up to 
9999 other people before getting to sign in themselves

If we want people to still only have to wait for up to 99 
other people, having a single list with everyone’s name on 
it is no longer viable



Parallelizing data storage scales better

Let’s instead split this into 100 different sign-in tables 
using everyone’s first names

● e.g., Aa-Am: Table 1; An-Az: Table 2, etc.

Now, each individual can check in faster!

Additionally, each checking operation is less expensive 
(the person at the table has a shorter list they need to 
consider and carry around)



Parallelizing data storage scales better

This is the basic underlying 
strategy behind “database 
sharding”, which effectively 
splits up your data into 
smaller, more manageable 
and efficient pieces



Picking a shard key is crucial

We have been using names for conference 
attendees/users of a website

Other data also have inherent properties that can be used 
as shard keys (e.g., genomic coordinates of a gene)

Otherwise, can hash a certain part of the data and use the 
result as your shard key (but then picking a hash function 
is crucial)



Desired properties of a shard key

Even distribution

● A good shard key evenly maps to the provided buckets
● In turn, the buckets need to be designed accordingly 

(e.g., we may want names starting with ‘A’ to have their 
own bucket; but ones starting with ‘X’, ‘Y’, and ‘Z’ might 
share a bucket due to their infrequency)



Desired properties of a shard key

Efficient access patterns

● However, some of the data buckets might simply be 
accessed more often even though the buckets are the 
same size

● In this case, we may want to pick a key that shards by 
data access patterns instead of distribution

● E.g., an online library may shard by book popularity 
instead of book title



Local computation parallelization



Different levels of parallelism

Bit-level parallelism

● Increasing processor size
allows for parallelization

● E.g., if we want to add two 16-bit integers:
○ An 8-bit processor needs to spend extra compute to break this up 

into two 8-bit addition operations that happen in serial
○ A 16-bit processor can handle this in one single 16-bit operation

https://www.geeksforgeeks.org/introduction-to-parallel-computing/
https://i.sstatic.net/7cfyg.png



Different levels of parallelism

Instruction-level parallelism

● Each core of a central processing unit (CPU) can only 
execute one instruction at a time

● Instructions can be ordered such that adjacent 
instructions do not affect the results of each other and 
thus can be run on different cores at the same time

● E.g., getting the value of two ints from different memory 
locations; one value does not depend on the other



Different levels of parallelism

Task-level parallelism

● If a task can be split into independent subtasks, we can 
allocate each subtask to different computers/nodes and 
later combine the outputs

● E.g., counting word occurrences in a large body of text; 
let’s see what an implementation looks like →



MapReduce algorithm

https://cdn-images-1.medium.com/max/800/0*Dx5RUyYZ7p-6GESb.png



Language-specific APIs

Different languages have different support for accessing 
these levels of parallelism

● E.g., python has a nice multiprocessing library that 
gives you access to all cores of your CPU

● I think C++ has similar libraries (like Open MPI) but I’ve 
never used them before



Server-scale computation parallelization



What is a server?

Servers are computers that 
“serve” resources to other 
computers

E.g., when you access 
“netflix.com” asking to watch 
“Avatar: the last airbender”, a 
computer figures out how to 
get you that byte streamhttps://upload.wikimedia.org/wikipedia/commons/thumb/c/c9/Client-server-model.svg/1200px-Client-ser

ver-model.svg.png
https://resizing.flixster.com/-XZAfHZM39UwaGJIFWKAE8fS0ak=/v3/t/assets/p8655066_b_v8_aa.jpg

?

!



For such a popular title, however, simply having one copy 
may not be sufficient (multiple people may want to access 
the same content at the same time)

In this case, we may want to duplicate the content and 
“scale out” the server, e.g., 4x:

We sometimes need to scale out servers

https://media.licdn.com/dms/image/C4E12AQGv6K8fizlDDQ/article-cover_image-shrink_600_2000/0/1564486772801?e=2147483647&v=beta&t=yVL_N2YZF5zHOPPN472nQsnYha_B-p_V1irUHoHvf50



Who gets which copy?

● We can use a shard key!
● E.g., we can hash and map user_ids into 4 buckets; 

each “bucket” is now a dedicated server with a copy of 
the content

We’ll talk more about web servers soon!

Navigating scaled out servers



Office hours

Reminder:

Homework 7 is due Sunday, March 2nd at 11:59pm!


