Genome 540 Discussion

February 27th, 2024 Clifford Rostomily

Assignment 7 Questions?

- Part 1: Use your predicted D-segments from hw6 to
- Generate a new scoring scheme
- Simulate background sequence
- Part 2: Run your D-segment program on the background and compare to the real data
- Part 3: Answer some questions

Assignment 8

HMM Tasks

Rabiner 1989:

Likelihood: Given an $\mathrm{HMM} \lambda=(\mathrm{A}, \mathrm{B})$ and an observation sequence O , determine the likelihood $\mathrm{P}(\mathrm{O} \mid \lambda$).
Decoding: Given an observation sequence O and an $H M M \lambda=$ (A, B), discover the best hidden state sequence Q .
Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

Example

Your dog is very moody and you want to know when they like or hate you so you start recording what they are doing when you get home everyday...

Waiting

Lounging

Sleeping

Model

Graphical representation with data

Graphical representation with data

Graphical representation with data

State 1

Graphical representation with data

Emission

Graphical representation with data

Transition

Baum Welch (Forward/Backward) - "Training" an HMM

1. Step 1: Expectation

a. Compute the forward probabilities
b. Compute the backward probabilities
2. Step 3: Maximization
a. Update the transition and emission probabilities

Forward Algorithm - Likelihood of an observed sequence

3 steps:

1. Initialization
2. Recursion
3. Termination

Forward Algorithm - Likelihood of an observed sequence

Computing the backward probabilities

Backward probabilities: probability of seeing the observations from time $\dagger+1$ to the end

Computing the backward probabilities

Backward probabilities: probability of seeing the observations from time $\dagger+1$ to the end

Computing the backward probabilities

 ?

Computing the backward probabilities

$$
b_{t}(i)=b_{t+1}(L)^{*} a_{L L}{ }^{*} e(L \mid L)+b_{t+1}(H)^{*} a_{L H}{ }^{*} e(L \mid H)^{* *} \text { Initialize assuming } b_{T}(i)=1
$$

Calculating the transition probabilities

Calculating the transition probabilities

$$
P_{\dagger}(i, j)=\frac{f_{t}(i) * a_{i j}{ }^{*} e_{j}\left(o_{t+1}\right) * b_{t+1}(j) \longleftarrow \begin{array}{l}
\text { Probability of observations } \\
\text { constrained on a specific } \\
\text { transition }
\end{array}}{\sum^{N}{ }_{j=1} f_{t}(j) b_{t}(j)} \quad \begin{aligned}
& \text { Probability of observations } \\
& \text { given the model }
\end{aligned}
$$

$$
\underline{a}(i, j)=\frac{\sum_{t=1}^{T-1} P_{t}(i, j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} P_{t}(i, k)}
$$

Calculating the emission probabilities

$$
\begin{aligned}
& V_{t}(j)=\frac{f_{t}(j) b_{t}(j)}{P(O \mid \lambda)}=\frac{f_{t}(j) b_{t}(j)}{\sum_{j=1}^{N} f_{t}(j) b_{t}(j)} \quad \begin{array}{l}
\text { Probability of being in state } j \text { at } \\
\text { observation sequence } O \text { and the }
\end{array} \\
& e_{t}\left(v_{k}(j)=\frac{\text { expected number of times in state } j \text { and observing symbol } v_{k}}{\text { expected number of times in state } j}\right. \\
& e_{t}\left(v_{k} \mid j\right)=e_{j}\left(v_{k}\right)=\frac{\sum_{t=1, O t=v}{ }^{\top} v_{t}(j) \longleftarrow}{\sum_{t=1}^{\top} y_{t}(j)} \quad \text { Sum of all } v_{t}(j) \text { where the observed symbol = } v_{k}
\end{aligned}
$$

Avoiding vanishing probabilities

- Scaling
- Good tutorial
- Work in log space
- Mann 2006

Scaling

- When computing forward probabilities, also compute a scaling factor c_{\dagger}

$$
c_{\dagger}=\frac{1}{\sum_{i=1}^{N} f_{t}(i)}
$$

- New forward probabilities at time \dagger are multiplied by c_{\dagger}
- Use c for scaling backward probabilities as well
- To get back true forward/backward probabilities

$$
f_{t}^{*}(i)=\left(\prod_{t=1}^{\dagger} c_{t}\right) f_{t}(i)
$$

Reminders

- HW7 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template

