Genome 540 Discussion

February 22th, 2024
Clifford Rostomily

Assignment 7 Questions?

- Part 1: Use your predicted D-segments from hw6 to
- Generate a new scoring scheme
- Simulate background sequence
- Part 2: Run your D-segment program on the background and compare to the real data
- Part 3: Answer some questions

Assignment 8

Markov Chain vs. HMM

Markov Chain

HMM

https://web.stanford.edu/~jurafsky/slp3/A.pdf

Markov Chain vs. HMM

Markov Chain

HMM

What is the probability of observing this sequence of states?

What are the most probable (unobserved) states given my observations?
e.g. I observed the sequence ATG, am I in a gene?

HMM Tasks

Rabiner 1989:

Likelihood: Given an $\mathrm{HMM} \lambda=(\mathrm{A}, \mathrm{B})$ and an observation sequence O , determine the likelihood $\mathrm{P}(\mathrm{O} \mid \lambda$).
Decoding: Given an observation sequence O and an $H M M \lambda=$ (A, B), discover the best hidden state sequence Q .
Learning: Given an observation sequence O and the set of states in the HMM, learn the HMM parameters A and B.

Example

Your dog is very moody and you want to know when they like or hate you so you start recording what they are doing when you get home everyday...

Waiting

Lounging

Sleeping

Model

Graphical representation with data

Graphical representation with data

Graphical representation with data

State 1

Graphical representation with data

Emission

Graphical representation with data

Transition

What is the most optimal state sequence given our model?

Viterbi - Most probable sequence of states

How probable is our model given the data?

Forward Algorithm - Likelihood of an observed sequence

3 steps:

1. Initialization
2. Recursion
3. Termination

Forward Algorithm - Likelihood of an observed sequence

Forward Algorithm - Likelihood of an observed sequence

Finally...

Sum over all state probabilities to get $\mathrm{P}($ observations \mid model $)=\Sigma_{\mathrm{T}} \mathrm{f}(\mathrm{i})$

How do we find the transition and emission

 probabilities given the data?
Baum Welch (Forward/Backward) - "Training" an HMM

1. Step 1: Expectation

a. Compute the forward probabilities
b. Compute the backward probabilities
2. Step 3: Maximization
a. Update the transition and emission probabilities

Computing the backward probabilities

Backward probabilities: probability of seeing the observations from time $\dagger+1$ to the end

Computing the backward probabilities

Backward probabilities: probability of seeing the observations from time $\dagger+1$ to the end

Computing the backward probabilities

 ?

Computing the backward probabilities

$$
b_{\dagger}(i)=b_{t+1}(L) * a_{L L}{ }^{*} e(L \mid L)+b_{t+1}(H)^{*} a_{L H}{ }^{*} e(L \mid H)
$$

Calculating the transition probabilities

$$
P_{t}(i, j)=\frac{f_{t}(i) * a^{*} e_{j}\left(O_{t+1}\right) * b_{t+1}(j)}{\sum_{j=1}^{N} f_{t}(j) b_{t}(j)} \text { Waiting }
$$

Calculating the transition probabilities

$$
P_{t}(i, j)=\frac{f_{t}(i) * a * e_{j}\left(o_{t+1}\right) * b_{t+1}(j)}{\sum_{j=1}^{N} f_{t}(j) b_{t}(j)}
$$

$$
\underline{a}(i, j)=\frac{\Sigma^{\top-1}{ }_{t=1} P_{t}(i, j)}{\Sigma^{\top-1} \Sigma_{t=1}^{N}{ }_{k=1} P_{t}(i, k)}
$$

Calculating the emission probabilities

Next time

To be continued...

Avoiding vanishing probabilities

- Work in log space
- Scaling

Reminders

- HW7 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template

