Genome 540 discussion

February 25th, 2025 Joe Min

Homework 7

HMM intuition

Homework 7

Homework 7

- 1. Using the D-segments identified in HW6,
 - a. Generate a new scoring scheme
 - b. Simulate a background sequence

2. <u>Using S = -D = 5</u>,

- a. Run your D-segment algorithm on the simulated sequence
- b. Re-run your D-segment algorithm on the HW6 data
- 3. Answer four short answer questions

Example: generate a new scoring scheme

1. Generate background and target frequencies

- a. Background = (elevated + non-elevated (- #Ns if 0)) / sum(all)
- b. Target = elevated / sum(elevated)

# read start counts			# totals	# freqs
## non-elevated 0=18422401 <u>- 84224</u> 1=200000 2=30000 >=3=4000	<u>401</u> ↑	## elevated 0=10000 1=200 2=30 >=3=4	## background 0=10000000 + 10000 1=200000 + 200 2=30000 + 30 >=3=4000 + 4	## background 0=10010000 / 10244234 1=200200 / 10244234 2=30030 / 10244234 >=3=4004 / 10244234
total = 10,234,000	Hardcoded #Ns for chromosome 16	total = 10,234	total = 10,244,234	

Example: generate a new scoring scheme

1. Generate background and target frequencies

- a. Background = (elevated + non-elevated (- #Ns if 0)) / sum(all)
- b. Target = elevated / sum(elevated)

# freqs as ratios	# freqs format	# final freqs	
## background	## background	## background	## target
0=10010000 / 10244234	0={#.####}	0=0.9771	0=10000 / 10234 = 0.9971
1=200200 / 10244234	1={#.####}	1=0.0195	1=200 / 10234 = 0.0195
2=30030 / 10244234	2={#.####}	2=0.0029	2=30 / 10234 = 0.0029
>=3=4004 / 10244234	>=3={#.####}	>=3=0.0004	>=3=4 / 10234 = 0.0004

Example: generate a new scoring scheme

2. Using LLRs with base 2, create a new scoring scheme

# final freqs		# scoring scheme	# scheme format
## background 0=0.9771 1=0.0195 2=0.0029 >=3=0.0004	## target 0=0.9971 1=0.0195 2=0.0029 >=3=0.0004	0=log2(0.9971 / 0.9771) 1=log2(0.0195 / 0.0195) 2=log2(0.0029 / 0.0029) >=3=log2(.0004 / .0004)	0={#.####} 1={#.####} 2={#.####} >=3={#.####}

Example: simulate a sequence of read start counts

Using the calculated background frequencies, simulate a new sequence that is the same length as chromosome 16 (minus Ns)

# totals	# final freqs	10,244,234
## background 0=10010000 1=200200 2=30030 >=3=4004 total = 10,244,234	## background 0=0.9771 1=0.0195 2=0.0029 >=3=0.0004	<pre>N = length of sequence to be simulated bkgd[r] = frequency of background sites with r read starts (r = 0, 1, 2, 3). for each i = 1N x = random number between 0 and 1 (uniform distribution) if x < bkgd[0] sim_seq[i] = 0 else if x < bkgd[0] + bkgd[1] sim_seq[i] = 1 else if x < bkgd[0] + bkgd[1] + bkgd[2] sim_seq[i] = 2 else sim_seq[i] = 3</pre>
		This is iteratively sampling from the background distribution

D-segment output format

Generate a histogram of segments >= to a given score

scoring scheme

```
0=log2(0.9971 / 0.9771)
1=log2(0.0195 / 0.0195)
2=log2(0.0029 / 0.0029)
>=3=log2(.0004 / .0004)
```

S = 5 D = -5 # real sequence: 5 {# of segments with score >= 5} 6 {# of segments with score >= 6} 7 {# of segments with score >= 7}

list all the segment score counts for scores between 5 and 30 (only first/last 3 shown here)

28 {# of segments with score >= 28} 29 {# of segments with score >= 29} 30 {# of segments with score >= 30} *#* simulated sequence:

- 5 {# of segments with score \geq 5 }
- 6 {# of segments with score \geq 6 {
- 7 {# of segments with score >= 7}

ist all the segment score counts for scores

between 5 and 30 (only first/last 3 shown here)

. 28 {# of segments with score >= 28} 29 {# of segments with score >= 29} 30 {# of segments with score >= 30}

D-segment output example

After identifying and scoring segments, you can add them to the histogram

D-segment output example

After identifying and scoring segments, you can add them to the histogram

5:2 6:2 7:2 8:2 9:2 10:2 11:1 12:1 13:1 14:1 15:1 16: 0 17:0 30:0

Comparing simulated data to real data

Finally, output the ratios of adjacent histogram values to understand the distribution shape of segment scores

```
Ratios of simulated data:
N_seg(5)/N_seg(6) {# of segments with score >= 5 / # of segments with score >= 6}
N seq(6)/N seq(7) {# of segments with score \geq 6 / # of segments with score \geq 7 }
N_seg(7)/N_seg(8) {# of segments with score >= 7 / # of segments with score >= 8}
list all ratios
(only first/last 3 shown here)
N seq(27)/N seq(28) {# of segments with score \geq 27 / # of segments with score \geq 28}
N_seg(28)/N_seg(29) {# of segments with score >= 28 / # of segments with score >= 29}
N seq(29)/N seq(30) {# of segments with score \geq 29 / # of segments with score \geq 30}
```

HMM intuition

If we wanted to utilize an HMM that represent winter weather temperatures, let's consider one implemented as a two state HMM:

- State 1: Normal cold winter weather
- State 2: In a warm spell

These two states might determine a day's temperature max with the following known emission probabilities:

State 1 (normal weather)

State 2 (warm spell)

- >=40F: 10%
- <40F: 90%

- >=40F: 60%
- <40F: 40%

So, if we measure the max temperature for 5 consecutive days, we might see:

Day 1	Day 2	Day 3	Day 4	Day 5
>= 40F	< 40F	>= 40F	>= 40F	>= 40F

And just by eye, this looks like these all could have been emitted by staying constantly in state 2, so we might take this as evidence that we are in a warm spell

More formally, we can calculate the most probable set of 5 states that could have produced the observed data. For simplicity, consider staying in one state the whole time:

	Day 1	Day 2	Day 3	Day 4	Day 5
	>= 40F	< 40F	>= 40F	>= 40F	>= 40F
State 1 probs	0.1	0.9	0.1	0.1	0.1
State 2 probs	0.6	0.4	0.6	0.6	0.6

If we had been in State 1 the entire time, the probability of the observed data would be $(0.1)^4 * 0.9 = 0.00009$

State 2 the whole time: $(0.6)^4 * 0.4 = 0.0518$

	Day 1	Day 2	Day 3	Day 4	Day 5
	>= 40F	< 40F	>= 40F	>= 40F	>= 40F
State 1 probs	0.1	0.9	0.1	0.1	0.1
State 2 probs	0.6	0.4	0.6	0.6	0.6

Given transition probabilities between states $(1 \rightarrow 2 \text{ and } 2 \rightarrow 1)$ we could also compute the probability of any sequence of hidden states

	Day 1	Day 2	Day 3	Day 4	Day 5
	>= 40F	< 40F	>= 40F	>= 40F	>= 40F
State 1 probs	0.1	0.9	0.1	0.1	0.1
State 2 probs	0.6	0.4	0.6	0.6	0.6

We did not consider any cases where there would be transitions, but just wanted to drive home:

• HMMs are tools for finding the most probable set of underlying states (e.g., "warm spell") for a given set of observed data (max temp from 5 consecutive days)

Reminder:

Homework 7 is due Sunday, March 2nd at 11:59pm!