Genome 540 Discussion

February 20th, 2024 Clifford Rostomily

Assignment 7

Overview

- Part 1: Use your predicted D-segments from hw6 to
- Generate a new scoring scheme
- Simulate background sequence
- Part 2: Run your D-segment program on the background and compare to the real data
- Part 3: Answer some questions

Part 1: New scoring scheme

Read start histogram for non-elevated copy-number segments:
0=331908-8422401 (\# Ns, don't forget this)
1=19439
$2=4272$
$>=3=1332$

Read start histogram for elevated copy-number segments:
0=1656
$1=542$
2=352
$>=3=499$
log2(target freq./background freq.)

Background frequencies:
$0=\{\# . \# \# \# \#\}$
$1=\{\# . \# \# \# \#\}$
2=\{\#.\#\#\#\#\}
$>=3=\{\# . \# \# \# \#\}$
Target frequencies:
$0=\{\# . \# \# \# \#\}$
$1=\{\# . \# \# \# \#\}$
2=\{\#.\#\#\#\#\}
>=3=\{\#.\#\#\#\#\}
Scoring scheme:
$0=\{\# . \# \# \# \#\}$
$1=\{\# . \# \# \# \#\}$
2=\{\#.\#\#\#\#\}
$>=3=\{\# . \# \# \# \#\}$

Part 1: Simulate new background sequence

```
\(N=\) length of sequence to be simulated (length of seq. In HW6-8,422,401)
bkgd[r] = frequency of background sites with \(r\) read starts \((r=0,1,2,3)\)
for each \(\mathrm{i}=1\)...N
    \(x=\) random number between 0 and 1 (uniform distribution)
    if \(x<b k g d[0]\)
        sim_seq[i] \(=0\)
    else if \(x<b k g d[0]+\) bkgd[1]
        sim_seq[i] = 1
    else if \(x<b k g d[0]+\) bkgd[1] \(+\operatorname{bkgd}[2]\)
        sim_seq[i] = 2
    else
        sim_seq[i] = 3
```


Part 2: Run D-seg and compare

Real data:
5 \{\# of segments with score >=5\}
6 \{\# of segments with score $>=6\}$
7 \{\# of segments with score >= 7\}
list all the segment score counts for scores between 5 and 30
(only first/last 3 shown here)

28 \{\# of segments with score >= 28\}
29 \{\# of segments with score >= 29\}
30 \{\# of segments with score >= 30\}

Simulated data:
5 \{\# of segments with score >=5\}
$6\{\#$ of segments with score $>=6\}$
7 \{\# of segments with score >= 7\}
list all the segment score counts for scores between 5 and 30
(only first/last 3 shown here)

28 \{\# of segments with score >= 28\}
29 \{\# of segments with score >= 29\}
30 \{\# of segments with score $>=30\}$

Example

Example

Part 2: Run D-seg and compare

Ratios of simulated data:
N_seg(5)/N_seg(6) \{\# of segments with score >= $5 /$ \# of segments with score >= 6\}
N_seg(6)/N_seg(7) \{\# of segments with score $>=6 / \#$ of segments with score $>=7\}$
N_seg(7)/N_seg(8) $\{\#$ of segments with score $>=7 / \#$ of segments with score $>=8\}$
list all ratios
(only first/last 3 shown here)

N_seg(27)/N_seg(28) \{\# of segments with score >= 27 / \# of segments with score >= 28\}
N_seg(28)/N_seg(29) \{\# of segments with score $>=28 / \#$ of segments with score $>=29\}$
N_seg(29)/N_seg(30) \{\# of segments with score >= $29 /$ \# of segments with score >= 30\}

HMM Primer

Markov Chain vs. HMM

Markov Chain

HMM

https://web.stanford.edu/~jurafsky/slp3/A.pdf

Markov Chain vs. HMM

Markov Chain

HMM

What is the probability of observing this sequence of states?

What are the most probable (unobserved) states given my observations?
e.g. I observed the sequence ATG, am I in a gene?

Reminders

- HW7 due this Sunday, 11:59pm
- Please have your name in the filename of your homework assignment and match the template

