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Characterizing problem difficulties



What does “problem difficulty” mean?

We have seen:

● Time/space complexity of algorithms (“Big O” notation)

Problems that can be solved in similar Big O time can be 
grouped as having similar difficulties



Familiar problem groups

Constant time: O(1)

● Accessing an element in an array

Linear time: O(n)

● D-segments; finding max element in an array

Quadratic time: O(n²)

● Brute-force sorting (e.g., insertion sort)



Unfamiliar problem groups

Factorial time: O(n!)

Exponential time: O(kⁿ); e.g., O(2ⁿ)

Examples??

● A classic example is the Traveling Salesman



Traveling salesman problem

“Given a list of cities and the distances 
between each pair of cities, what is the 
shortest possible route that visits each 
city exactly once and returns to the 
origin city?”

https://en.wikipedia.org/wiki/Travelling_salesman_problem#/media/File:GLPK_solution_of_a_travelling_salesman_problem.svg



Traveling salesman problem: brute force algorithm

For a route of n cities:

● There are n! orderings of the n cities
● Try each ordering of cities (e.g., for 

cities A, B, C, try all 3! permutations) 
and keep track of the shortest route

Time complexity: O(n!)

https://en.wikipedia.org/wiki/Travelling_salesman_problem#/media/File:GLPK_solution_of_a_travelling_salesman_problem.svg



Traveling salesman problem: dynamic programming

Dynamic programming can save us!

● Split up the set of cities into subsets
and save shortest routes

● Each city can be included or not,
resulting in 2ⁿ subsets that can each
be solved in O(n²)

https://en.wikipedia.org/wiki/Travelling_salesman_problem#/media/File:GLPK_solution_of_a_travelling_salesman_problem.svg



Traveling salesman problem: dynamic programming

Solving subsets

● In each 2ⁿ subsets, S, consider each
of the n possible ending cities, j

● To minimize the route to j, we must
minimize the route to all n possible
ending cities in S - {j}

(2ⁿ subsets)*(n ending cities)*(n ending cities) = O(2ⁿ*n²)
https://en.wikipedia.org/wiki/Travelling_salesman_problem#/media/File:GLPK_solution_of_a_travelling_salesman_problem.svg



Problem reduction



Reducing one problem to another

Let’s say we want to find the median in an unsorted list of 
integers

A brute force algorithm would be to look at the value, V1, 
of the first index in the list, compare it to all other values vi. 
If the number of vi > V1 is the same as vi < V1, then this is 
the median. If not, start over with the next value, V2

So, we have an upper bound of O(n²) on time complexity



Reducing one problem to another

But! If we could just have a sorted list, then finding the 
median is O(1), as we just go to the middle index and 
retrieve that value

We know sorting can be done in O(n*logn) time, so we can 
reduce the problem of “finding a median” to the problem 
“sorting a list”; that is, finding a median is *at least* as hard 
as sorting a list, giving us a new upper bound of O(n*logn)



Reducing one problem to another

If we could continue to reduce the problem to even easier 
problems (e.g., that could be solved in O(n) or O(1) time), 
then we could bring down the upper bound even further

But because we haven’t found a way to reduce the sorting 
problem any further, O(n*logn) is the best we can do



Turing machines



What is a Turing machine?

https://en.wikipedia.org/wiki/Turing_machine



What is a Turing machine?

Similar ideas to an HMM:

● Keeps track of some internal state
● Rules govern transitions to new states

Key differences:

● Machines are used to perform calculations; HMMs are 
probabilistic representations of sequences



What can Turing machines do?

Given enough tape (memory) and retained states (internal 
rules of computation), a Turing machine can, almost by 
definition, compute anything that can be described as a 
deterministic algorithm

● Given the same input, it will always produce the same 
output



What *can’t* Turing machines do?

There are fundamental limitations to what is computable…

● because it requires infinite memory like calculating the 
digits of Pi (an infinitely long list of ints)

● or because it requires infinite steps like a simple 
counter inside a “while True” loop



What *can’t* Turing machines do?

A more interesting uncomputable problem is the classic 
Halting Problem, which basically asks:

Given some algorithm/program P that takes input x, is 
there some other program H(P, x) that can output whether 
or not P will finish running given x?

● E.g., H(P, x) returns True if P will finish when given x



The halting problem

Why is the halting problem uncomputable? High level 
proof by contradiction, assuming a good H(P, x) exists

Let P now do the opposite of what H says, e.g.,:

● If H(P, x) returns True, P loops forever
● Else, P halts

Then H can not be correct when returning True



The halting problem

This is a contradiction! Thus the assumption that a good 
H(P, x) exists must be false; thus the halting problem 
cannot be solved as a deterministic algorithm.

This means that the halting problem is *not* computable 
by a Turing machine! AND there are some problems that 
are simply uncomputable for all inputs



Turing completeness

Any general programming language that can simulate a 
Turing machine is considered to be “Turing complete” (TC)

Most modern coding languages (e.g., Python and C++) 
are Turing complete, but also things like Excel are Turing 
complete; things like HTML or XML, however, are more 
like data structures than languages, and are not TC



P vs. NP



So far…

Some algorithms are impossible to implement for all inputs

The algorithms we *can* implement have various different 
time complexities

Some of these algorithms can be reduced to easier ones

Now, finally! P vs. NP



What is P?

“P” stands for polynomial, and P 
represents all decision problems that 
can be solved by a Turing machine in 
polynomial time

This is the world in which all of our 
algorithms for class live

https://en.wikipedia.org/wiki/Decision_problem



What is NP?

“NP” stands for nondeterministic 
polynomial, and NP represents 
decision problems where, if the answer 
is “yes”, can be easily verified in 
polynomial time

https://en.wikipedia.org/wiki/Decision_problem



Example of NP

Consider a set of integers {-3, 1, 2, 5}, where we want to 
know if any subset of this set of integers can sum to 0

● Here, the answer is “yes” (-3 + 1 + 2 = 0)

As the set grows linearly, however, the possible number 
of subsets grows exponentially (not polynomial!)

● HOWEVER given any single subset, we can easily 
verify in O(n) time if it actually adds up to 0



The space of decision problems

NP-Hard means that 
these problems are 
*at least* as difficult 
as the hardest NP 
problems

NP-complete means 
it’s the hardest NP 
problems AND is NP



The space of decision problems

E.g., the halting 
problem is NP-hard 
because it’s harder 
(impossible?) than 
the hardest NP 
problem, and is not 
NP



The space of decision problems

Many (most?) people 
think that P != NP

…but what if it was??



If P = NP

Then any NP problem can be reduced to be solved in 
polynomial time

● E.g., the traveling salesman problem (at least, the 
decision version where we ask “is this the shortest 
route?”) could be solved in polynomial time

● Would break (some) cryptography, which basically 
relies on problems being too hard to solve



Office hours

Reminder:

Homework 6 is due Sunday, February 23rd at 11:59pm!


