Genome 540 discussion

February 18th, 2025 Joe Min

Homework 6 overview

Poisson distributions

Homework 6

Homework 6 overview

- 1. Implement the D-segment algorithm to identify regions of elevated copy number variation (CNVs)
- 2. Run your program on chromosome 16 of the CHM13 long-read-based genome assembly

Goals:

- Identify all high-scoring regions of the genome according to some scoring scheme
- In O(n) time, identify boundaries of these regions by identifying regions with large "drops" in score

Whole region has total score of 105 but...

Whole region has total score of 105 but...

Discontinuous high-scoring regions might have different biological significance

To find *all* high-scoring segments (i.e., all regions with score >= S), we could keep track of region best starts and stops to maximize region scores but this requires going backwards, which could be $O(n^2)$ in the worst case

We can instead keep track of a region's maximum cumulative score, as well as a cumulative drop from that to identify the region's ending boundary

We can instead keep track of a region's maximum cumulative score, as well as a cumulative drop from that to identify the region's ending boundary

```
O(N) algorithm to find all maximal D-segs:
cumul = max = 0; start = 1;
for (i = 1; i \le N; i^{++})
     cumul += s[i];
     if (cumul \geq max)
          \{\max = \operatorname{cumul}; \operatorname{end} = i;\}
     if (\text{cumul} \le 0 \text{ or cumul} \le \text{max} + D \text{ or } i == N) {
          if (\max \ge S)
            {print start, end, max; }
          max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING
            NEEDED! */
```

Applying D-segment reveals CNVs

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 0
1: 0.50	S: 3	start = 0
2: 1.0		end = 0
> =3: 1.25		cumul = 0

O(N) algorithm to find all maximal D-segs: cumul = max = 0; start = 1; $for (i = 1; i \le N; i++) \{$ cumul += s[i]; $if (cumul \ge max)$ $\{max = cumul; end = i;\}$ $if (cumul \le 0 \text{ or cumul} \le max + D \text{ or } i == N) \{$ $if (max \ge S)$ $\{print \text{ start, end, max;} \}$ max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */ $\}$

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 0
1: 0.50	S: 3	start = 1
2: 1.0		end = 1
> =3: 1.25		cumul = 0

O(N) algorithm to find all maximal D-segs: cumul = max = 0; start = 1; $for (i = 1; i \le N; i++) \{$ cumul += s[i]; $if (cumul \ge max)$ $\{max = cumul; end = i;\}$ $if (cumul \le 0 \text{ or cumul} \le max + D \text{ or } i == N) \{$ $if (max \ge S)$ $\{print \text{ start, end, max;} \}$ max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 0.5
1: 0.50	S: 3	start = 2
2: 1.0		end = 2
> =3: 1.25		cumul = 0.5

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 1.5
1: 0.50	S: 3	start = 2
2: 1.0		end = 3
> =3: 1.25		cumul = 1.5

O(N) algorithm to find all maximal D-segs: cumul = max = 0; start = 1; $for (i = 1; i \le N; i++) \{$ cumul += s[i]; $if (cumul \ge max)$ $\{max = cumul; end = i;\}$ $if (cumul \le 0 \text{ or cumul} \le max + D \text{ or } i == N) \{$ $if (max \ge S)$ $\{print \text{ start, end, max; }\}$ max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */ $\}$

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

D: -3	max = 2.75
S: 3	start = 2
	end = 4
	cumul = 2.75
	D: -3 S: 3

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 2.75
1: 0.50	S: 3	start = 2
2: 1.0		end = 5
> =3: 1.25		cumul = 2.0

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 3.0
1: 0.50	S: 3	start = 2
2: 1.0		end = 6
>=3: 1.25		cumul = 3.0

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 3.0
1: 0.50	S: 3	start = 2
2: 1.0		end = 6
> =3: 1.25		cumul = 2.25

O(N) algorithm to find all maximal D-segs: cumul = max = 0; start = 1; $for (i = 1; i \le N; i++) \{$ cumul += s[i]; $if (cumul \ge max)$ $\{max = cumul; end = i;\}$ $if (cumul \le 0 \text{ or cumul} \le max + D \text{ or } i == N) \{$ $if (max \ge S)$ $\{print \text{ start, end, max;} \}$ max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */ $\}$

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 3.0
1: 0.50	S: 3	start = 2
2: 1.0		end = 6
> =3: 1.25		cumul = 1.5

Position	1	2	3	4	5	6	7	8
Read Start Counts	0	1	2	3	0	2	0	0
Score	-0.75	0.50	1.0	1.25	-0.75	1.0	-0.75	-0.75

Sample scoring scheme

0: -0.75	D: -3	max = 3.0
1: 0.50	S: 3	<mark>start = 2</mark>
2: 1.0		<mark>end = 6</mark>
>=3: 1.25		cumul = 1.5

O(N) algorithm to find all maximal D-segs: cumul = max = 0; start = 1; $for (i = 1; i \le N; i++) \{$ cumul += s[i]; $if (cumul \ge max)$ $\{max = cumul; end = i;\}$ $if (cumul \le 0 \text{ or cumul} \le max + D \text{ or } i == N) \{$ $if (max \ge S)$ $\{print \text{ start, end, max; }\}$ max = cumul = 0; start = end = i + 1; /* NO BACKTRACKING NEEDED! */ $\}$

Poisson distributions

What is the Poisson distribution?

- Used for discrete, countable data over given intervals
- Classic example: yearly deaths by horsekick in the Prussian army (from von Bortkiewicz, 1898)
- Many years had zero deaths
- Some years had one
- Fewer had two, etc.

What is the Poisson distribution?

Because we are dealing with count data

- Support only from natural numbers; thus the distribution often shifts left toward zero
- Shape depends on the parameter (λ), which in turn relies on the likelihood of each event

Defining the Poisson

A random variable X has a Poisson distribution if its probability function is defined by:

$$f(k;\lambda) = \Pr(X{=}k) = rac{\lambda^k e^{-\lambda}}{k!}$$

That is; the probability that the measured count X has value k is given by $\frac{\lambda^k e^{-\lambda}}{k!}$

- k represents numbers of occurences (0, 1, 2, ...)
- λ is both the mean and variance of f(k; λ)

Working with the Poisson

Has nice properties:

- λ is both the mean and variance of f(k; λ)
- Serves as an approximation of the binomial distribution (if the number of events is sufficiently high and the probability of each event is sufficiently low)
- Has a known conjugate prior (Gamma), giving a closed-form posterior for use in Bayesian inference (basically; it's easier to update models with new data)

Reminder:

Homework 6 is due Sunday, February 23rd at 11:59pm!