
Genome 540 discussion
January 7th, 2025

Joe Min

Agenda

Discussion structure

Homework advice

Choosing a language

Managing programming environments

Discussion structure

Discussion structure

Technical topic of the day (30m)

● Ideas relevant to homework
● Interesting or thought provoking issues

Office hours (20m)

● Fully optional
● Homework/general questions

Homework advice

Start early!

Start early

● Especially the first
assignment

Submit early

● You will receive
feedback within 1 day
and can resubmit

1

2

Using A.I.

Do use it as a tool
● Translating python to C++
● Learning syntax for a new language
● Debugging specific problems

○ Use it like a quicker version of stack overflow

Don’t ask it to do your assignment
● You won’t learn anything if it does all the thinking
● If it’s wrong, debugging might be harder than doing the

assignment

Write readable code

Use intuitive variable/function names

x = 0 vs. number_of_friends = 0

Comments

● As headers describing functional chunks

this calculates the number of friends in your life from your phone’s data

● To describe complex lines of code

this is just a verbose way to say zero

num_my_friends = (a^-exp(24*b))/5 - (a^-exp(24*b))/5

How to approach assignments

1. Understand the algorithm
2. Outline your code

a. Start to think of your code in the abstract first and write a skeleton

3. Fill it in
4. Evaluate if things are working with small tests

a. We will provide some test inputs; try to think of additional edge cases

5. Compare your results on the test data against the
provided test results

Choosing a language

Which language should I use?

● You are free to choose
● Most people use C++, C, or Python
● Why one over the other?

Compiled vs. Interpreted Languages

Code
print(“hello world”)

Machine Code
for(i;i<10;i++){}

Output
> hello world

Machine
Code (0010101)

*** The following explanations are gross oversimplifications

https://www.youtube.com/watch?v=_C5AHaS1mOA

https://www.youtube.com/watch?v=_C5AHaS1mOA

Execution

Compiled vs. Interpreted Languages

Code
print(“hello world”)
x = 1
y = 2
z = x + y
print(z)

Compiler Machine Code
0101010100100101
0001010011111001
0100101001110101
0101001010010100
1010101000000111

● Compiler translates code into machine code
● Machine code can be run over and over (assuming correct

OS/architecture)

MyScript.c MyScript.o

CPU

Memory

Machine
Code

000101010
010010010
111010010
010010010
100100100

Execution

Compiled vs. Interpreted Languages

Code
print(“hello world”)
x = 1
y = 2
z = x + y
print(z)

Interpreter

CPU

Memory

● Program executed line by line at runtime
● Need an interpreter to run program

1.

2.
3.
4.
5.

Static vs. Dynamic, Strong vs. Weak

Python is a dynamic strongly typed language

● Don’t need to declare type: x = 5

C++ is a static weakly typed language

● Need to declare type: int x = 5;

Which language should I use?

Your choice

● C++ will give the biggest improvement on the 1st
assignment

● C++ will be ~10x faster in pretty much all cases
● Python will work for all assignments but you have to know

how to get around limitations of the language
● Python will be easier to learn/write/debug

Managing programming environments

Environments for new languages and workflows

Phenomenon: different programs have different and often
conflicting dependencies (language/library/OS)

Problem: computers generally only like to have one version of
each thing otherwise things get messy

Existing solutions: virtual machines; virtual environments;
containers

Docker (or Apptainer) containers

Containers are isolated environments that have virtual
operating systems (OS)

● Can install everything from scratch and ensure it’s the
same every time

● Can distribute these environments for others to use (no
more “well it works on my computer!”)

● Can easily be scaled up for variable use (e.g., just spin
up another container to handle more web traffic)

Docker/Apptainer containers

Dockerfiles shows exactly how the environment is set up,
including files you may want inside your running container

Images vs. containers

Images

● Defined in Dockerfiles
● The “permanent” version (i.e., the “DNA”)

Containers

● Essentially just functional copies of images (i.e., the
“RNA”)

● Designed to be ephemeral and easily replaced

Building images

docker build -t hello_image /examples/
○ -t “tags” your image with a name so it’s easily referenced
○ /examples/ is the directory containing the Dockerfile and hello.cpp

Running containers

source directory is still there
from building the image

As is the executable we
made on line 11

The program can run from
inside the container!

Can get complicated, but if
done right, can be a lot
easier than managing
multiple environments

Potential discussion topics

What do you want to learn more about?

● Scalable bioinformatics pipelines (Snakemake)
● General programming tips
● Specific languages: Python, C++, Unix tools
● Dynamic programming
● Machine learning
● Version control/Github

Next time

Getting started in C++

● Pointers and why they’re important

Getting around limitations in Python

● Simulating pointers
● Overriding classes

