
    Lecture 1: Overviews     Genome 540     Phil Green

	

 Hello, everyone, and welcome to 
Genome 540.  I'm Phil Green, the 
instructor. In this opening lecture I'll 
give you some overviews that 
hopefully will help to put the course 
into context.   	

I'll start with some general comments 
about the role of computation in 
biology. 	

Then I'll give you my view more 
specifically of computational 
molecular biology, emphasizing in 
particular the fundamental 

importance of probabilities.	

 Then, because 540 is focused on computational methods for interpreting genomes, I'll 
present a high-level, somewhat non-standard view of genome biology which emphasizes 
sites — rather than, say, genes —as the fundamental units of functional information. This 
viewpoint turns out to be useful when we're developing probability models for the genome. 	

Next, a summary of genomicists' tasks and the roles that computation plays in those. 	

And finally, an overview of the course content and how it fits in with the computational 
tasks that you need for interpreting genomes, including some comments on what's not in 
the course and why.	
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Let's start with three broad ways to 
think about the relationship between 
computation and biology.  	

One is that it's like the author list on a 
scientific paper. Biology is the senior 
author, which originates and 
motivates the work and provides the 
judgment to guide it to a conclusion. 
Computation is the junior author, 
which carries out much of the work, 
provides the energy and a lot of the 
ideas, but may lack the experience to 
know what's important and what's 
not. 	

If you want to do computational biology, you really should try to be like both authors. So in 
particular, if you come from a computational rather than a biological background, you 
should spend a fair amount of time trying to understand the biology:  taking courses, 
reading textbooks and current literature, talking to biologists, and in general trying to 
develop an intuitive feel for the science — learning to think like a biologist.  Even if you're 
not going to do research in biology it's still worth learning as much about it as you can, 
because it's an amazing, beautiful, and important intellectual achievement. 	

A second way of thinking about computation is as technology — like microscopes, or 
sequencing, or CRISPR, for example.  It enables you to make scientific discoveries that would 
be difficult without it. And like these other technologies, computation actually alters the 
course of the science, by changing the kind of problem that scientists think about once they 
realize what it can do. In fact it's pretty clear you could not do biology as it's currently 
practiced without powerful computational methods.  Analyzing, or even collecting massive 
data sets of the sort that are now central to molecular biology would not be possible. 	

At the same time though, technology should not displace the science: it’s not an end in itself. 
People coming from computational backgrounds tend to prize novelty and aesthetics:  a 
new, clever and elegant algorithm is something to strive for.  But while those can be useful 
criteria, they should never override the utility. The purpose of the computational technology 
is to make biological discoveries, and that's frequently going to involve sacrificing both 
novelty — because an old method more often than not does the trick — and elegance, 
because the analyses needed may be ‘kludges’ stringing together a series of different steps. 
This may not be very satisfying to someone trained to appreciate the beauty of mathematics 
and computer science but it typically is just what you need to analyze biological systems 
(which are themselves kludges produced by a haphazard evolutionary process!)	
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A third way to think about 
computation is in terms of the role it 
plays in the scientific method.  In 
general, computational analysis can't 
answer a biological question 
definitively, rather it generates 
hypotheses that need to be tested by 
experiments, according to the 
scientific method. You of course want 
these hypotheses to have some 
reasonable chance of being correct in 
order to persuade somebody — 
which could be yourself, or a 
collaborator, or some other biologist
— to carry out the experiments. One 

of the reasons for using probability models (which we'll be discussing later in this lecture) 
for your computational analysis is that they allow you to make a strong case that a particular 
pattern is unlikely to be due to chance, and therefore is worth some experiments. 	

An interesting point here, though, is that sometimes experiments may not be practical, and 
computational evidence for a biological phenomenon might be the best you can do.  This is 
because evolution can act on extremely subtle effects. For example, a mutation having a 
fitness effect size of 0.001 — which means the difference between leaving 999 rather than 
1,000 descendants after some number of generations — would likely be very difficult  to 
confirm in the lab, but is enormous from the perspective of evolution. In fact, population 
genetics theory tells us that a fitness effect size of the order of 1 / N, where N is the effective 
population size, is enough for evolution to go to work on.  An experimental test of such an 
effect size (1 / N) would require you to work with the entire population of the species!
Furthermore, most populations experience a variety of different environments, and it's 
unlikely you could reproduce all of them experimentally.  So even much larger effect sizes 
may sometimes not be confirmable in the lab, if you can't reproduce the relevant 
environment. Evolution is a much more thorough experimentalist than humans can be, and 
for some of its experiments, computational analyses of the genome may provide our most 
convincing evidence.	

Page ￼  of ￼3 29

3

• Computational analysis generates hypotheses
– which must ultimately be tested by experiment. 
– But hypotheses should 

• have some reasonable chance of being correct, and 
• carry indication of reliability.

– Some computational findings may not be testable in lab
• Evolution is a much more sensitive experimentalist



Computational molecular biology    Lecture 1: Overviews   Phil Green

	

Now let's focus a little more 
specifically on computational 
molecular biology (CMB) . I think of it 
as basically a convergence of three 
fields:  molecular biology — that part 
of biology that tries to understand 
cells and organisms as systems of 
interacting molecules — and two 
computational fields: statistics and 
computer science. 	

Of these, molecular biology is 
paramount: It poses the questions 
and judges the answers (like a ‘senior 
author’).  Whether or not your work 

as a computational biologist is worthwhile ultimately comes down to whether or not you're 
making a contribution to the biology. 	

The line between statistics and computer science has become increasingly blurred over the 
past few decades — computer science has become more statistical and statistics has 
become more computational— but there are still non-trivial differences in their perspective 
(and in most universities, they are still separate departments). The differences partly reflect 
a tension between what you might call ‘fuzzy thinking’ and deterministic thinking. The real 
world is ‘fuzzy’, in two ways:  first, it's extremely complicated; and second, the underlying 
physical laws are in part probabilistic in nature (the same inputs can have different 
outputs).  However, our brains construct simplified models of reality that are mostly 
deterministic, with causes and effects. Our scientific theories to some extent reflect this 
deterministic thinking but they also try to address the fuzziness. 	

In CMB, computer science comprises the deterministic aspects of computation — 
computers, programming languages, data structures, and algorithms— while statistics 
addresses the fuzziness, in particular contributing probability models for biological 
processes.  By helping to simplify the biology and make it more manageable, such 
computational models play a role similar to that of experimental models such as model 
organisms and model systems. 	

Because biological systems are much more complex than the systems that physicists and 
chemists tend to study, biologists have had to become more comfortable with ‘fuzzy 
thinking’, and consequently statistics in some ways has a closer relationship to the biology 
than computer science does. This close relationship goes back at least to the early 20th 
century, when both genetics and modern statistics were being developed, and a symbiotic 
relationship between them emerged:  Geneticists needed statistics to interpret their data., 
and statisticians looked to genetics as a source of interesting problems. This was long before 
it was known that DNA was the genetic material, or electronic computers existed. 	
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For computer scientists, fuzzy thinking is less congenial,  and it can be a bit unsettling to 
learn that biologists don't even agree with each other on the definition of a gene — one of 
the most fundamental concepts in genome biology!  	

In the next lecture we'll talk more 
about algorithms,  but here I’d like to 
say a little more about the role of 
probabilities in biology.  Probabilities 
are important at two different levels: 	

First, at the fundamental level of 
physical laws for living organisms 
viewed as systems of interacting 
molecules,  and second,  at the higher 
level of evolutionary processes. 	

	

At the fundamental physics level you 
have, first, quantum mechanics and 
quantum electrodynamics, which 
determine the structure and pairwise 
interactions of individual atoms and 
molecules. In the prevailing 
‘Copenhagen interpretation’ of 
quantum theory,  the wave aspect of 
matter and radiation provides 
probabilistic information about 
particle locations, motions, and 
interactions	

Systems of interacting molecules are 
complicated enough that there's no 
hope in practice of directly tracking 

the individual molecules (their coordinates, speeds, and so forth); rather, you have to 
understand the properties of the system by looking statistically at the ensemble of 
molecules. The relevant theory for this is statistical mechanics and thermodynamics. Again, 
fundamentally probabilistic.	

 These quotes from the two physicists generally considered the greatest since Newton bear 
on this issue of probabilities in physical laws. Maxwell is best known for putting the classical 
laws of electromagnetism in final form, the so-called Maxwell's equations. This was prior to 
the quantum era, and his laws are deterministic —they’re about waves, but probabilities 
don't come into them. Nonetheless, he says “he true logic of this world is in the calculus of 
probabilities.”  Now, in fact, Maxwell was also one of the developers of statistical mechanics
— among other things, he helped discover the so-called Maxwell-Boltzmann distribution of 
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Probabilistic Physical Laws

• Structure & pairwise interactions of atoms & molecules: 
– quantum mechanics & quantum electrodynamics

• Systems of interacting molecules: 
– statistical mechanics & thermodynamics

“The true logic of this world is in the calculus of probabilities” 
– James Clerk Maxwell

“I cannot believe that God plays dice with the cosmos” –
Albert Einstein
– but two of his four great 1905 papers dealt with statistical aspects 

of nature (photoelectric effect & Brownian motion)!

55

Biology involves probabilities, 
at several levels:

• Fundamental physical laws governing 
molecular systems

• Evolutionary processes
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velocities of molecules in gases — and this quote suggests that he regarded that work as 
perhaps more central to our understanding of how the world works. 	

On the other hand there's this contrasting quote from Einstein: “I cannot believe that God 
plays dice with the cosmos”.  Einstein did not like the idea of fundamental physical laws that 
were probabilistic in nature,  and as a result, he never accepted quantum mechanics. 
Nonetheless if you look at the four great papers he published in 1905 (his ‘miracle year’) , 
although two of them (on special relativity and E = mc2) had nothing to do with 
probabilities, the other two are both statistical in significant measure. One, on the 
photoelectric effect, helped instigate quantum mechanics; and the other explained 
Brownian motion of dust particles in a water drop under the microscope as the statistical 
effect of collisions with enormous numbers of water molecules (this work helped persuade 
many previously sceptical scientists that the atomic theory was in fact valid). 	

At a higher level, probabilities are 
important in evolutionary processes:   
in mutations as random changes to 
the DNA,  transmission of DNA from 
parent to offspring in populations of 
individuals, inheritance of alleles (via 
chromosome segregation) and so 
forth.  And then random aspects of a 
variable environment.  So, since 
genomes are shaped by evolution, 
you can't really understand them 
without probabilities!	
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Now let's move on to interpreting 
genomes, starting with a high-level 
overview of genome biology. 
Genomes undergo two fundamental 
processes, both of which involve 
copying:  replication, which is the 
copying of the entire genome into 
new DNA molecules, and 
transcription, which is the copying of 
parts of the genome into RNA 
transcripts. 	

The functional information in the 
genome is in the form of what I'll call 
sites., which are short sequence 

segments (generally from about three to about 15 bases) that bind to an RNA or a protein 
molecule, which I'll call the reader, to help mediate some function. 	

Sites can be grouped into two broad categories: Those that act (are read) at the DNA level, 
and those acting at the RNA level. 	

Now, those of you who’ve studied genome biology are probably wondering how I can talk 
about the functional information in the genome without mentioning genes.  One reason I'm 
not doing that here is the fact mentioned earlier, that the definition of a gene is not 
universally agreed upon; but a more important reason is that sites are really more 
fundamental. Genes, as well as other genomic features, are comprised of sites.  And as we'll 
see, thinking in terms of sites is quite helpful in developing probability models of the 
genome. .	

So we view a gene as 
a set of sites, and you 
can see a lot of them 
here. There are sites 
acting at the DNA 
level that control 
transcription. The 
unprocessed RNA 
transcript has sites 
acting at the RNA 
level for splicing out 
the introns and 
polyadenylation, and 
the processed 
transcript includes a 
5’ untranslated 
region with a 
translation start site 
and possibly some 
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translational regulatory signals; a coding sequence which is comprised of an array of codon 
sites; and a 3’ untranslated region that may include, for example, microRNA binding sites 
and protein binding sites that play roles in targeting the transcript within the cell, 
controlling its degradation and so forth.   	

The ambiguity regarding the definition of a gene basically comes down to which sites do you 
choose to include in the gene and which do you not, but that becomes an uninteresting 
semantic issue once you focus on sites rather than genes as the fundamental units. 	

There are some subtleties in the 
definition of sites.  One is that 
binding of an RNA or protein reader 
to some sequence is generally not 
sufficient in itself to make it a site;  
the binding event also has to help 
mediate some function within the 
cell. In general, that's going to involve 
the reader interacting with some 
other protein or RNA molecules to 
carry out some cellular process. 	

Site sequences are generally short 
enough that they occur frequently in 
random sequence. A transcription 

factor binding sequence for example might be just 6 or 7 bases, short enough that you can 
expect to find it by chance, every few thousand bases.  Such chance occurrences may be 
recognized by a reader molecule and transiently bound without triggering any function — 
so aren’t sites, by our definition. So there is  presumably a fair amount of nonproductive 
binding to ‘dummy sites’. But having short binding sequences also means that it's relatively 
easy to create new instances of potential sites via mutation. So from evolution's perspective, 
small size is a useful feature, rather than a bug. But it does increase the computational 
challenge of finding the functionally important ones. 	

A second point is that sites aren't necessarily active in every cell. The reader, or its 
interaction partners required to carry out some function, may not be available (not 
expressed, or inactivated in some way — for example, via phosphorylation, or by being 
bound to another protein that prevents binding to the DNA or RNA); or the reader may be 
present but prevented from binding because the DNA is methylated or already bound by 
some other protein (e.g. chromatin proteins, or readers at overlapping sites). 	

A third point is that although sites constitute the functionally important part of the genome, 
the non-site DNA (or background DNA, as we'll sometimes call it) may still carry important 
information.  In particular, the distance between nearby sites can influence interactions 
between reader molecules, which may be important for function. So the DNA that's between 
the sites may be important, not for its own sequence, but as a spacer for positioning the 
sites relative to each other.  In addition, the background sequence is important for 
estimating mutation rates.  That's useful even if you're only interested in the sites, because 
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Sites
• Binding ≠ reading

– chance non-functional occurrences of site-like 
sequence may be transiently bound
• inefficient, but evolutionarily significant! 

• A site may be inactive in some cells
– Reader may be absent, inactivated, or obstructed 

from binding (sites can overlap!)
• Background (= non-site) sequence carries 

information:
– site spacing
– mutations
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one important way to detect sites is as regions that are relatively depleted of mutations due 
to purifying selection.	

 Sites are distributed non-randomly 
within the genome, something we’ll 
need to take into account when 
developing probability models. First, 
sites recur, in the sense that a given 
reader will generally recognize 
multiple different sites.  Once 
evolution has gone to the trouble of 
creating a particular reader, it tends 
to reuse it — for example, a given 
transcription factor is typically used 
in the expression of several different 
genes. 	

The different sequence instances of a 
site usually vary somewhat.  The sequence logo (which we'll see an example of shortly) is 
one nice way of representing this variation in a manner that conveys frequency information. 
Motifs, which are often used but less informative, indicate the possible nucleotides at each 
position but without frequencies. 	

Sites also typically tend to cluster (we’ll call the clusters features):  several sites, with the 
same or different readers, may act collectively to carry out some function.  Often there are 
positional constraints within the cluster.  So for example,  coding sequence is made up of 
multiple codon sites, and the positional constraints there are very strict since each codon 
immediately follows the previous one with no intervening bases and no overlap. Other 
constraints (for example, between splice sites) can be more lax.  	

A gene, as we saw before, is a cluster of sites involved in expressing a particular transcript. 
Expression of a protein coding transcript involves not only causing the transcription to 
occur, but also the processing of that transcript (e.g. splicing) and its translation into 
protein. So several steps are involved in getting to the end product, which is a protein 
molecule or molecules. There can also be additional steps in processing non-coding 
transcripts (for example, modification of  nucleotides in tRNAs).	
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• Sites typically recur:
– multiple sites within a genome, with possibly varying 

sequences, may be recognized by the same reader
• Sequence variation may be represented by a motif or 

(better!) a sequence logo

• Sites typically cluster (into ‘features’):
– several sites, with the same or different readers, acting 

collectively to carry out a function
• site ordering, orientation and spacing may be important

– gene = cluster of sites involved in expressing a 
particular transcript
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 How much of the genome do the 
sites represent?  In bacterial 
genomes, that fraction seems to be 
quite high; typically, 70% or more of 
the sequence, might be protein 
coding, and when you add in RNA 
genes, transcription factor and other 
regulatory sites, and a replication 
origin, you're getting up close to 90% 
or more — not 100%, because there 
may be transposons and other 
parasitic DNA elements, and some 
DNA that's just playing a spacer role 
— but the vast majority of the 
genome does seem to be functional. 	

When you go to more complicated organisms, in particular the human genome,  the 
situation is quite different. There are some ‘intelligent design’ proponents —  including 
some scientists — who believe that either God, or evolution, has efficiently structured the 
human genome to be almost entirely functional.  But the current prevailing view among 
most genomicists, based on comparing genomes to each other to estimate the fraction under 
purifying selection, is that only about 5% to 10% of the human genome is functional. 
However, a precise answer is hard to get, because of variability in mutation rates across the 
genome. and my own belief is that it's even less, around 2% — 60 million base pairs, or 
roughly  20 times the size of a typical bacterial genome.  That’s still a lot of DNA: After 
subtracting  out the 35 million or so bases in protein-coding sequences and known 
functional non-coding RNAs, there’s enough left to allow an average of about 1200 bases of 
regulatory sequence for each of the 20,000 genes — much more than has been found even 
for intensively studied genes.	

Well, if the sites are less than 10%,  what's the other 90% or more?  At least 50% is 
identifiable as transposable elements, retroviruses, processed pseudogenes created by 
reverse transcription of RNA transcripts back into the genome, and ‘dead’ genes: sequences 
that look like they were once genes, but lack transcripts and have picked up enough 
mutations that they are clearly no longer functional. Much of the remaining 40% or so 
probably arose in the same way (from transposons etc) but over hundreds of millions of 
years has accumulated enough mutations to obscure the original source. 	

Why such a difference between human and bacterial genomes? There are several reasons 
why selection for efficient genome organization ought to be much stronger in bacteria than  
in humans. One factor is relative population sizes. As I mentioned earlier in the lecture, 
according to population genetics theory  evolution acts on fitness differences as small as 1/
N where N is the effective population size of the organism, so more sensitively for organisms 
with large populations.  Humans, for most of their history, seem to have had a  fairly small 
effective population size numbering in the tens of thousands, far less than bacteria. 	

Another factor is reproductive lifespan. Many bacteria grow fast enough in nutrient-rich 
conditions that replication of the DNA is rate-limiting, and one expects there to be intense 
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• Genome size
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competitive pressure to keep replication time, and therefore genome size,  as small as 
possible. 	

Finally, as the genome gets larger, each added transposable element (for example) 
represents a diminishing percentage of the total size, and so one expects selection against it 
to correspondingly decrease. The human genome, at 3 billion bases, is 1,000-fold larger than 
a 3 megabase bacterial genome, and an added transposon that doesn’t interfere with site 
activities has proportionately smaller impact .	

Consistent with the above, other eukaryotes  such as yeast, Drosophila, C. elegans,  fish, tend 
to be intermediate between bacteria and humans with respect to population size,  life span, 
and genome size, and they're generally also (as predicted by the above considerations)  
intermediate in the estimated functional proportion of the genome. 	

Also consistent with this idea that selection for efficiency has been weak in humans is the 
finding that in many human cells a surprisingly high fraction of newly synthesized protein 
molecules misfold and then are immediately degraded. This is a major waste of cellular 
energy, probably, in fact, much worse than the energy lost in replicating an unnecessarily 
large genome. 	

Recall that sites may act either at the 
DNA level or at the RNA level. The 
DNA level sites usually have protein 
readers, and they help carry out or 
regulate one of the two fundamental 
processes, replication or 
transcription.  	

Replication-associated features (site 
clusters) include replication origins, 
centromeres, and telomeres.   I 
include telomeres here because one 
of their major roles is to ensure the 
faithful replication of the ends of 
linear chromosomes; and 

centromeres, because they are involved, not in DNA replication per se, but in ensuring the 
faithful distribution of the products of DNA replication to daughter cells. 	

Transcription involves several types of feature: promoters, enhancers, and suppressors.  The 
readers in this case are called transcription factors.	
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DNA sites

• Readers are usually proteins
• Help carry out or regulate a fundamental 

process
– Replication

• Replication origins, centromeres, telomeres (each having 
multiple sites)

– Transcription
• Promoters, enhancers, suppressors (each usually having 
multiple sites, with readers being transcription factors)
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Let’s look at an example of a transcription factor binding site. This figure is taken from the 
website of Tom Schneider, who invented sequence logos of the sort depicted here at the 
bottom.  The sequences are from the genome of a bacterial virus (or phage), lambda, which 
infects E. coli . Each sequence consists of a cluster with two binding sites, each of length 9 
bases, for the transcription factor Cro (a different transcription factor, cI, also recognizes 
these sites). There's a 1-base spacer (always the same size!) between the two sites, so the 
total length of each cluster sequence  is 2 x 9 + 1 = 19 bases. 	

There are 12 different sequences here, but they correspond to only 6 different clusters in 
the lambda genome, because both DNA strands are given for each cluster. So sequence 2 
here is the reverse complement of sequence 1,   4 is the reverse complement of 3 and so on. 	
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To fully understand what's going on here, we need to picture the protein binding to the DNA 
in three dimensions. First, recall the two-stranded molecular structure of DNA. This slide 
shows it schematically on the left, indicating the phosphate-sugar backbone on the outside 
and the A:T and C:G base pairs on the inside. The two strands run in opposite directions: the 
strand on the left has its 5' end on the top and its 3' end on the bottom, whereas the strand 
on the right has them reversed (the sugars are upside down).	
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Now, on the left above is a space-filling model of the atoms in a DNA  molecule. Note first of 
all that it is a double helix, with the two  strands winding around each other and base-
pairing with each  other. These two ridges are the sugar-phosphate backbones of the two  
strands, and the base-pairs you can see to some extent in the grooves.  There are two 
continuous grooves: the so-called major groove here,  which goes around the back and re-
emerges here, and the minor groove  here, going back behind and coming up here.  Every 
base shows up  partly in the major groove and partly in the minor groove.  Although  you 
can't really make out the base pairs, each full turn of the helix  — so for example from a 
point here to a point here, or a point here  to a point here — corresponds to about 10.5 base 
pairs.    	

Note also that the helix is right-handed, meaning that if you point  the index finger of your 
right hand along a ridge of the helix, your  thumb points in the vertical direction (up or 
down) that the ridge is  going. If you try that with your left hand instead, the thumb points in  
the wrong direction.    	

Most transcription factors bind primarily in the major groove, because  there are more 
opportunities to make contacts with atoms in the  nucleotide bases there, although there are 
some that bind within the  minor groove, or within both grooves.    	

Above on the right is a stereo image: if you cross your eyes to make  the two images 
converge you can see this in 3D.  What's depicted is  two identical copies (one in blue and 
one in yellowish-green) of one  of these proteins (cI or cro, I'm not sure which) binding to 
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the  double helix at one of the sequences depicted on the earlier slide.  Both are making 
contact with the major groove but also with each  other, and in fact that interaction with 
each other helps to increase  the overall stability of both molecules binding to the DNA sites, 
so  it's important.  For this particular protein, the contact between the  two copies requires 
one to be flipped around with respect to the  other. That means that the DNA sites that they 
bind to are also  flipped around (in reverse orientation).    	

Now let’s return to the multiple site sequences.  Recall that there are 6 different clusters, 
and the two sites in each are in  opposite orientations so that the two protein molecules can 
contact  each other.   To compare all twelve sites, you need to include the  reverse 
complement sequences so that the right hand sites are put in the  same orientation as the 
left hand ones. Note that for convenience each site is represented by a single-stranded 
sequence, but the protein  itself contacts both strands simultaneously.    	

So on the left side here you have the 12  9-base sites all in  the same orientation; on the right 
you have the same 12 sites but now  all in the reverse orientation.  So the sequences on the 
right (and  the overall patterns) are the reverse complements of what's on the  left.    	

Note that the site sequence is not invariant.  At the bottom is a sequence  logo, which 
reflects the frequencies with which different nucleotides are used at each position. In all of 
these sites you  have a C here, and an A here; these presumably correspond to the most  
important contact points with the protein; in the reverse complements  you have a G here 
and a T here (the complementary nucleotides, in the  reverse order).  Some of the other 
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positions appear to show somewhat  weaker conservation and others appear free to vary 
(including, as  you'd expect, the spacer nucleotide between the two sites).    	

The logo is actually comparing two probability models, one reflecting  frequencies with 
which nucleotides are used in instances of the site,  and the other the so-called background 
probability model which gives  the average frequencies of nucleotides at non-sites (or the 
genome as  a whole).  The total letter height at each position indicates how much  better the 
site model fits than the background.  In a sense this  corresponds to the information the 
protein needs in order to pick out  a site from the rest of the genome.    	

The biology underlying site sequence variability is interesting and not  always understood. 
Some variability is presumably at positions where  contact with the protein is weak or non-
existent, and so has little  impact on the strength of binding.  At positions where contact 
does  occur, some variability might be important in regulating the strength  of binding (some 
sites might need to be bound more tightly than  others).    	

The curve that's depicted here has a spacing of 10.5 bases between  peaks, and is intended 
to reflect the fact that the proteins are  binding on one side of the helix so you might expect 
the contact  points in the two site copies, and the most highly conserved bases, to  show that 
spacing.  That seems to be approximately true here.    	

Another thing to note is that the total number of conserved positions in  one site is small; 
only about 3-4 bases — so it makes  sense that you need a cluster of two of them to get some 
specificity and stable binding.	

The second broad class of sites are 
those acting at the RNA level, with 
the reader recognizing the site within 
a transcript (not the genomic DNA) 
and thereby helping to carry out the 
transcript's function. (Of  course the 
site's sequence is also present within 
the genomic DNA, since  the 
transcript is a copy of it).  Often, but 
not always, the reader is  itself an 
RNA transcript. 	

   As we saw earlier, protein coding 
transcripts contain a variety of  sites.    	

There are also RNA transcripts that don't encode proteins but carry out some other function 
in the cell -- for example tRNAs, ribosomal  RNAs, spliceosomal RNAs, microRNAs, and a 
variety of so-called lncRNAs  (long noncoding RNAs).  These all contain at least one type of 
site  that might seem a little strange, but fits the definition I'm using:  namely 'stems' that 
basepair one short sequence within the transcript  to a complementary sequence within the 
same transcript, and which  thereby help to give the transcript a structure that is important 
to  its function. So these are sites for which the transcript is reading itself! 	
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• Readers are often RNA 
• Help carry out the transcript’s function

– in protein coding transcripts:
• Translation start sites, codons (reader = charged tRNA), 

splice sites, microRNA binding sites, polyadenylation 
sites, …

– in functional RNA transcripts:
• Stem structures (the transcript reads itself!), …
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Here's an example illustrating some RNA sites involved in protein  translation.    	

Within a protein-coding transcript the codons are 3-base sites whose  readers are tRNAs.  In 
this case the codon AGU, which you look up in  the table as the first base A, second base G, 
third base U, so it's a  serine codon.  The reader is a tRNA ('charged' with the amino acid  
serine) that has the complementary 'anticodon' sequence ACU (in 5' to  3' order).    	

Further, the tRNA, as a functional RNA in its own right, has a stem  structure with sites 
where the RNA base  pairs internally to itself; and also  additional sites, one of which is 
recognized by the tRNA synthetase  protein which covalently attaches a serine molecule to 
the tRNA, and  others which are recognized by proteins that modify some of tRNA's  
nucleotides to stabilize it.    	

Serine has five additional codons in this table that are read by other tRNAs. Some  tRNAs can 
read more than one codon — in fact I think this tyrosine  tRNA can read both of the tyrosine 
codons, via wobble pairing — so  there is sequence variability for some of these codon sites 
similar to  what we saw in the transcription factor case.   	

Of course the translation process involves this whole complex (charged tRNA +  mRNA 
codon) interacting with the ribosome and there are other sites in  the tRNA and the coding 
transcript that are recognized by various  proteins within the ribosome.    	
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Here's another example: sites involved in the splicing process. First,  the so-called 5' splice 
site (meaning that it is at the 5' end of the  intron).  The reader is the U1 small nuclear RNA 
that recognizes it by  base pairing. This picture shows perfect pairing, but in fact  typically 
the pairing is not perfect, that is you don't have an  absolutely required base at all these 
positions within the  transcript.  So the U1 RNA sequence here can base pair with multiple  
possible sequences here, and you have sequence variability as in the  previous examples.  
The U1 RNA has its own sites, including the stem  structures that stabilize it, sites that 
interact with protein  components of the spliceosome, and so forth.    	

A little upstream of the 3' end of the intron there’s a  branch site which is recognized by the 
U2 snRNA.  And then at the 3’end are other sites that are recognized by protein components 
of the spliceosome.    There are some constraints on site spacing but they  are quite weak, as 
indicated by the fact that intron sizes vary  enormously. If the intron is too small, the splicing 
machinery either  can't recognize the intron at all or it can't process it correctly, so  there is a 
lower bound on intron size (about 70 to 80 bases in human  genes, with rare exceptions). 
But there's no corresponding upper  limit and there are introns that are hundreds of 
kilobases long.	
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Given that view of the biology, in 
order to interpret genomes,  
genomicists first need to get the 
genome sequence, and identify the  
transcripts that are made from the 
genome. Then they have to find the  
sites, being mindful that sites can act 
either at the DNA or at the  transcript 
level. On the following slides I'll say a 
bit more about  each of these.     	

Finally they have to illuminate the 
molecular functions of the sites.  This 
is really the most open-ended and 
difficult part, requiring a  variety of 

methods, and I won't try to cover it.  One thing  that's very helpful though is the fact that 
sites recur, not only  within one organism's genome but also between the genomes of 
different  organisms, and so once you've figured out the function for a  particular site you 
largely understand the function for many other  occurrences of that site as well.  	

The main approach to finding the 
genome sequence requires getting  
reads, which are the sequences 
(often with basecalling errors) of  
short pieces of the genome, and then 
assembling those to  infer the 
underlying genome sequence.  The 
assembly process involves,  in 
essence, finding sequence matches 
between portions of the reads,  
figuring out from these how the reads 
overlap in the genome, and then  
piecing the overlapping reads 
together while identifying and  
eliminating basecalling errors in 

order to reconstruct the underlying  genome sequence.    	

The main challenge in assembly is duplicate or nearly duplicate  sequences within the 
genome, which arise in evolution in several ways. One type is  self-copying parasitic DNA 
elements (such as transposons), which typically are a few hundred to a few  thousand bases  
long.  Another type is segmental duplications arising from errors in  DNA replication, which 
can be up to several megabases.    	

Consequently, when two reads have portions that are highly similar,  one has to consider the 
possibility that they do not actually overlap  within the genome but rather come from 
different copies of a duplicated segment.  The different segments often have acquired 
sequence differences via  mutation that in principle should help to identify spurious 
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Genomicists’ tasks

• Find the genome sequence

• Find the transcripts

• Find the sites ...

• … and their functions …
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Finding the genome sequence

• Get reads (short, overlapping, error-prone 
pieces of the sequence)

• Assemble : identify read overlaps, infer 
underlying sequence

• Main challenge: 
– (Near-)duplicate sequences
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overlaps.  But read basecalling errors complicate this, and evolutionarily recent  duplicates 
can be essentially identical.      	

A variety of assembly strategies have been developed that try to cope with the duplicate 
segment issue.  Computationally, it helps to have  probability models for both basecalling 
errors and the mutation  process.  But the 'killer technology' finally allowing assembly of  
essentially complete human genomes has been  the  advent of very long reads (longer than 
most duplicated segments).  Even with those however comparing reads to each other  
remains an important requirement. 	

  Now, finding the transcripts, 
sometimes called RNASeq.  Since it's  
easiest to sequence DNA, RNASeq 
involves first of all making cDNA  
copies of the processed mRNA 
transcripts using reverse 
transcriptase, and  then getting 
sequence reads from the cDNA. 
Typically these reads are  then 
aligned to the genome, which allows 
targeted assembly to be done  for 
reads mapping to the same genomic 
region in order to reconstruct  full 
transcript sequences from the region.    	

There are a number of issues here that collectively make finding all  the transcript 
sequences a more challenging problem than sequencing  the genome.    	

One is that many transcripts can be spliced in more than one way  ('alternative splicing'), 
resulting in multiple isoforms that may  encode somewhat different proteins.  Different 
isoforms share parts of their  sequences with each other, which presents an assembly 
problem similar  to that presented by duplicate segments in genome assembly.    	

Another issue is expression bandwidth: genes may be expressed at  very different levels, 
with some transcripts several orders of  magnitude more frequent than others. This greatly 
increases the amount  of sequencing that must be done in order to be sure of getting the  
rarest transcripts. That issue doesn't really arise in genome  sequencing since all portions of 
the genome are equally represented in  the starting DNA from which libraries are made 
(although library  construction can sometimes introduce biases!)    	

Another issue is that expression level, and to some extent splicing,  depends on the cell type.  
So you have to make cDNA libraries from  many different cell types to maximize the chance 
you're getting all  isoforms of all genes.    	

Yet another problem is that at least some transcripts are  non-functional.  Some transcripts 
from protein-coding genes result  from splicing errors (which are common enough that 
there is a cellular  process, nonsense-mediated decay, for detecting and degrading them).  
Most lncRNAs, which by definition lack protein coding potential, also  currently lack any 
other known function within the cell.  Novel  functions have been discovered for a few of 
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Finding transcripts (“RNASeq”)
• Get reads from cDNA copies of the processed 

(spliced + edited) transcripts
• Align to genome sequence 
• Assemble to infer transcript sequence
• Main challenges: 

– Expression bandwidth
– Transcripts may be processed in more than one way 

(isoforms)
– A transcript may be non-functional!
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them, and may be for  others.  But given that selection for efficiency appears to be  relatively 
weak in the human genome, it's also quite plausible (even  likely!) that most lncRNAs are 
simply transcriptional  'noise'.  Alternatively many of them may be byproducts of  
transcriptional events in which the act of transcription is important  because it remodels the 
chromatin (which may be important for  expression of nearby genes), but the transcript 
itself is  non-functional. In such a situation the functional sites of interest  would be the 
transcription-inducing sites acting at the DNA level, and  not RNA-level sites in the 
transcript. 	

A harder problem is to find the sites. 
One method that a lot of work  has 
gone into, for example in the ENCODE 
project, is the direct  detection of 
binding events.  One approach for 
this is to use  antibodies (or some 
kind of tagging) to a particular 
transcription  factor to isolate that 
factor bound to DNA and then 
sequence the DNA.  A similar strategy 
could be used for other DNA binding 
proteins, and  presumably also for 
RNA-binding proteins.  This approach 
seems to be  limited to readers that 
are proteins, and it requires some 

knowledge  of what they are; but a more serious objection is that, as we  discussed earlier, 
you can have binding without it being functional so  the sequences you get may include non-
sites.    	

A somewhat complementary computational approach is to look for clusters of recurring 
motifs, not only known ones from the binding  studies but also novel ones which have 
similar lengths, distributions of conserved positions, nucleotide composition, and clustering  
patterns to the known ones.  Because site motifs are short they occur often by  chance, so 
small clusters (of 1 or 2 sites) may not be reliably  detected.   	

So both of those methods are error-
prone to some degree.  A different 
and generally more definitive 
strategy (although with its  own 
limitations!) is to compare genomes 
that differ from each other  and try to 
relate the sequence differences to 
phenotypic differences  (in 
physiology, or other organismic or 
cellular characteristics).  This can 
point you both to the sites and, 
sometimes, to a functional  role for 
specific sites.    	
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Finding sites

• Direct detection of binding events (e.g. ChIPSeq)
– but binding may be non-functional!

• Computational search for clusters of recurring 
motifs
– but motifs occur frequently by chance, in any large 

genome!
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• a lab organism & a singly mutated variant with an 
altered phenotype
– the mutation must then alter (or create!) a site

• or alter site spacing 
– and the phenotypic change illuminates its function
– but remember that cells with identical genomes can 

sometimes have different phenotypes!
• Tissues in multicellular organisms

• members of a natural population
– Usually multiple genomic and phenotypic differences
– find correlations (of recurring differences) to identify 

sites that affect a particular phenotype. 24

Compare genomes of …
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The key point is that a difference in phenotype usually means that  there is a sequence 
difference affecting sites.  For phenotypes at the  cellular level you have to be a little careful 
because of the fact  mentioned earlier, that for a variety of reasons sites may vary in  activity 
across cells and so cells with identical genomes can  nonetheless have different phenotypes.  
But assuming you can control  or check for that, phenotype differences usually imply 
sequence  differences that either alter a site's activity or create a new  site. Insertion or 
deletion mutations in background sequence between  two sites could also have a phenotype 
by altering site spacing, but  that's not an issue with point mutations.    	

In experimentally manipulable organisms (or cells) you can in  principle find sites using 
CRISPR (for example) to systematically make  mutations and assess phenotypes.  Of course 
this is quite challenging on a genome-wide scale, and more seriously it may not  actually find 
all sites because (as previously discussed) our own  ability to assess phenotypes in the lab is 
much less sensitive than  evolution's.    	

Another approach is to leverage naturally occurring mutations by  comparing different 
members of a population.  The problem here is that  generally any two individuals have 
multiple sequence differences and  multiple phenotypic differences, so associating 
phenotype to genotype  is challenging.  What you have to look for is correlations of  
recurring differences — shared phenotypes between individuals having  shared genotypic 
changes.  GWAS studies do this in a targeted way.  But GWAS typically does not, at least by 
itself, pinpoint the affected  site because genomic variants in linkage disequilibrium with 
each  other often have similar correlations with the phenotype.	

Finally, you can compare different 
species. In this case you will have 
many sequence  differences and 
many phenotype differences, the 
numbers depending on  how closely 
related the species are.  We again 
expect phenotype  differences to 
largely reflect differences in site 
content, i.e. sites  present in one 
organism but absent from the other.  
Conversely, shared  sites should 
typically correspond to shared 
aspects of phenotype.    	

Since background (non-site) 
sequence is not under purifying selection,  it accumulates mutations more rapidly than site 
sequences do.  For  very distant organisms, the density of accumulated mutations may make  
alignment of background impossible; for closer organisms, it may be  possible, but shared 
sites should still be detectable as having higher  similarity (greater conservation, due to 
purifying selection)  between the species than the background.  So in both cases the  
alignment can give us information about shared sites, but it says  essentially nothing about 
lineage-specific sites underlying the  differences between the species.	
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• different species
– Many differences 
– atypically similar (= “conserved”) regions likely 

represent site clusters in which mutations have been 
selected against (“purifying selection”)

• and likely have similar functions in the two species 
– But many sites may have been lost, and created, in 

each lineage
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Illustrating that, this figure from Adam Siepel's paper on his program  PhastCons depicts 
alignments of a particular region in the human  genome to four other vertebrates: mouse, 
rat, chicken and fish. Down  here we see the sequence, up here a schematic indicating 
aligned  segments. You can see that the alignments to chicken and especially  to fish are 
pretty much confined to exons in the genes in this region,  with a little bit of surrounding 
sequence that may include some  regulatory sites.  The alignments to our fellow mammals 
mouse and rat  are much more extensive, which could be partly due to shared  mammalian-
specific sites but is mainly due to the background sequence  still being alignable.  Within the 
aligned portions there  are some regions, almost certainly clusters of shared sites under  
purifying selection, that stand out as having a much higher degree of  conservation, 
indicated by these bars here.  	
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 Hopefully, you'll have noticed in the 
preceding survey of genomicists'  
tasks that there are some recurring 
computational themes. 	

One is  comparing (and aligning) 
sequences:   Sequence assembly 
involves comparing reads to reads;  
variant detection and transcript 
assembly involve comparing reads to  
genomes; and finding evidence of 
shared sites between species involves 
comparing  genomes to genomes.    	

The appropriate alignment method 
depends on how similar the sequences  are. In these first two cases the sequences are highly 
similar to each  other, with isolated single-base differences from base-calling errors  and 
mutational variants, and (in the case of transcripts aligned to  the genome) isolated large 
gaps corresponding to introns. In  such cases, methods of the sort we'll discuss in the next 
lecture allow you  to quickly find large perfectly matching segments which can then be  
easily extended to alignments.   	

 However the last case, involving distantly related genomes, or genes,  requires more 
sensitive methods which we'll discuss later in the  course.  	

 A second recurring computational 
requirement is models — simplified  
representations of the genome 
sequence, sequence evolution, and 
alignments that can guide  
computational analyses.   To 
computationally find sites within 
genome sequences, we'll want to  
model sites and site clusters, as well 
as the non-site background.    To find 
shared sites within genome 
alignments, we'll want to  
computationally model mutation and 
purifying selection. In addition,  to 
find the alignments themselves we'll 

need a model to tell us how to  do the scoring of an alignment.    	

It will turn out that the models we develop for the above purposes are  helpful in analyzing 
not just the sequences, but also various types of  lab-generated 'linear' data relevant to 
genome interpretation --  for example read depth, or protein binding information.  	
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• Computational models of
– Genome sequences 

• sites, site clusters, and “background”
– Sequence evolution

• Evolutionarily related sequences
– Alignment scoring

• Conserved vs neutrally evolving regions
– Other types of ‘linear’ data associated to the 

genome (e.g. read depth)

28

Some major computational tasks
• Comparing & aligning sequences

– Reads to reads
• assembly

– Reads to genomes
• variant detection
• transcript assembly

– Genomes to genomes (or portions thereof)
• Evolutionary conservation

Appropriate alignment method depends on 
how similar the sequences are!
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So, what type of model?  It won't be a 
surprise that we favor  probability 
models, for several reasons:    First, 
genomes result from evolution, which 
is inherently  probabilistic as we 
discussed earlier.    Second, what 
we're trying to do is basically to 
detect site signals in  a noisy 
background, and for signal to noise 
problems probability  models are a 
widely used and powerful approach.  
Noise almost by its  definition has to 
be modelled probabilistically. And as 
we've seen,  there's a lot of variability 
in site sequences, so it makes sense to  

model that probabilistically as well.    	

Finally, probability models allow you to report a measure of  confidence in your prediction, 
which is important when you're trying  to persuade someone to commit experimental 
resources to confirming it.  	

There is still an important and non-
trivial question as to how complex  
our models need to be.  To start with, 
here are a few illuminating quotes:    	

One, from the British statistician 
George Box, is 'all models are  wrong; 
some models are useful'. He means 
that the real world is  complex 
enough that no model can fully 
capture it, and so any model is  
'wrong' in that sense. That's 
especially true of biological systems,  
which are far more complex than 
simple physical systems.  But some  

models are able to capture enough of the reality to be able to make  some progress in 
understanding it, and so are useful.    	

An older quote from the French poet and philosopher Paul Valery is  'What is simple is 
always wrong. What is not [by which he means what  is not simple] is unusable'. He's talking 
more broadly about how we  think about reality, and saying that we have no choice but  to 
simplify.    	

An even earlier quote from Einstein is 'Everything should  be made as simple as possible, 
but not simpler'. He's talking here  about the process of trying to deduce physical laws, and 
is saying,  again, that you have to simplify reality to some extent, but that it's  important to 
simplify to the appropriate level.	
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• “All models are wrong; some models are useful.”  
– George Box

• “What is simple is always wrong. What is not is 
unusable.” – Paul Valery

• “Everything should be made as simple as 
possible, but not simpler.” – Albert Einstein (?)
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Models: simplicity vs complexity
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• We use probability models for this purpose:

– genomes are products of a probabilistic process 
(evolution)

– detecting biological “signal” against “noise” of 
background sequence or mutations

– measure of reliability

Probability Models



 Computational tasks         Lecture 1: Overviews    Phil Green

Okay, so all models are going to be oversimplifications to some  extent, but that still doesn't 
tell us how complex they should  be. Generally, we start with simple models ('as simple as 
possible' as  Einstein would say), and then gradually make them increasingly complex  to 
capture more and more of the biology.    	

There's a lot of exciting research now 
in  developing and applying deep 
neural nets, which are extremely 
complex  computational models that 
can have literally trillions of 
parameters,  to all sorts of things 
including molecular biology. So now 
that we  have the ability to do that, 
what's the point of using anything  
simpler?    Well, complex models have 
some significant disadvantages that 
it’s important to be aware of.   In 
increasing order of seriousness:  	

  	

One, of course, is that they're more computationally challenging to work  with.     	

A second is overfitting. The more parameters your model has, the  more it will tend to 
capture chance characteristics of the training  data that you use for estimating the 
parameters, with the result that  the trained model although fitting the training set very 
well,  performs poorly on new data not in the training set.  And of course  it's the new data 
that you're most interested in.  Neural net  developers are well aware of this issue of course 
and have methods to  try to avoid it, but those methods don't work perfectly.   For example,  
it has been found that deep neural nets for image classification  typically fail on images to 
which a small amount of pixel noise has  been added -- such that a human has no problem 
seeing what's in the  image, but the neural net breaks down because it's 'overfit' to data  
lacking such noise.   ‘Hallucinations’ are probably another manifestation of overfitting.  	

Statisticians have given a lot of thought to the issue of overfitting  in complex models, but I 
think it's fair to say it's not really a  solved problem yet — you can reduce overfitting, but not 
eliminate  it. Even simple models will tend to overfit to some extent.      	

Finally, and this I think is really the most serious issue, is that  complex models are difficult 
to interpret: what do the trillions of  parameters mean?  How does the model really 'work'?  
Basically, a  complex model is a 'black box'. You can run it on data, and get an  answer, and it 
might even be a reliable answer, but you don't  understand why you got that answer.  I'd 
argue that this is  in fact anti-scientific, since the goal of science is to understand  reality and 
a black box that simply makes predictions doesn't provide  that understanding.    The 
machine learns, but we don’t!  Again, people who work on deep neural nets recognize model  
interpretability as an important issue, and have made some progress on  it, but it's a very 
hard problem and I think it's fair to say that it  is far from being solved.	

Page ￼  of ￼26 29

• Computational challenge

• Overfitting

• (Lack of) interpretability
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Some disadvantages of complexity
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In this course we'll focus on 
sequence-based computational 
molecular  biology; that is, general 
methods for obtaining and analyzing 
the  information encoded in the 
genome sequence.  As I mentioned 
earlier,  many of the methods apply 
more broadly to other types of  linear  
data associated with genomes.    	

We'll emphasize the underlying 
biology, discussing along the way 
some  of the biological facts that are 
relevant to the computational  
methods.    	

We'll favor simple and interpretable probability models.  This is not  to discount the 
importance of more complex machine learning models,  but rather it's because if you're 
going to be working with probability  models at all it's good to start with simple ones. And 
as we'll see  you can get surprisingly far with those.  I suspect there's a place  for models that 
are intermediate in complexity between deep neural  nets and the fairly simple hidden 
Markov models that we'll be talking  about in this course -- still simple enough to be 
interpretable, but  incorporating more of our knowledge of the genome. But that's for  future 
research!    	

Regarding proofs: Typically I just try to give you some intuition for  proofs, and either omit 
the details altogether or include them on  slides that I skip over in the lecture.  This reflects 
how I  personally tend to absorb proofs which is to read through them several  times, each 
time getting some of the ideas.  That doesn't fit very  well into a lecture. Hopefully you won't 
find that too frustrating.	

Here's a survey of the course content; 
it is laid out in more  detail on the 
course web page.   	

 In the next lecture we'll discuss 
algorithm generalities and then  
suffix arrays and hash tables, which 
are methods for finding exact  
sequence matches.    	

Then, probability models for 
background sequence.    	

Then, probability models for sites, 
and related to those, weight  matrices 

and sequence logos, which have to do 
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• The focus is sequence-based CMB
– i.e. methods (& models) for obtaining & analyzing the 

information encoded in the genome
• We emphasize the underlying biology
• Simple / interpretable computational models are 

favored 
• Proofs are often only intuitive sketches, omitting 

details 

32

This course

Main topics 
• Suffix arrays (& hash tables) for finding exact matches
• Background sequence models
• Site models, weight matrices & sequence logos
• Highest weight paths on weighted directed acyclic 

graphs: dynamic programming algorithm
• Finding non-background-like regions (“HMMs lite”)
• Edit graphs & gapped-alignment algorithms
• Hidden Markov models and applications

– Parsing genomes (into sites & non-sites)
– Finding conserved regions

• Simple molecular evolution models
33
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with comparing two  models, namely site models and background models.    	

Then I want to talk about dynamic programming, which is sometimes  called the 
"Fundamental algorithm of computational molecular  biology” because it comes up in many  
different contexts.  I'm going to present this  algorithm in the context of finding highest 
weight paths on weighted  directed acyclic graphs, for two reasons: First, I find it very  
helpful to have the concrete picture of a graph for understanding how  the algorithm works. 
Second, in the applications we want to make of  this algorithm in computational biology, 
there nearly always is an  associated graph for which highest weight paths or related  
constructions correspond exactly to what you want to compute.    	

Then I'll discuss the problem of finding sequence regions which  compositionally don't look 
like the background. I call this 'HMMs  lite' because the ideas are closely related to what 
comes up in  2-state hidden Markov models.    	

Then I'll talk about gapped-alignment algorithms. The weighted  directed acyclic graph 
that's associated to these is called an edit  graph, and the Smith-Waterman algorithm is just 
dynamic programming to  find a highest weight path on this graph.  We'll talk about those 
more  generally for aligning multiple sequences.    	

Then we'll get to hidden Markov models and some of their  applications. In particular, HMMs 
are a good way of parsing genomes  into sites and background. HMMs greatly generalize site 
models and  background models, which you can think of as corresponding to  different 
states or sets of states within a genomic HMM.     	

And finally finding conserved regions within alignments. PhastCons  (which I showed you a 
slide from earlier) uses what's called a  phyloHMM, so we'll talk about those.  And in the 
context of that I'll  talk about simple molecular evolution models, because you need those  in 
phyloHMMs. There's a lot more to say about molecular evolution  models that I won't get 
into. I'll just give you a simple idea of how  to do some of the basic calculations.	

Things we don't cover:     	

Although HMMs can be used to find 
new site motifs, there are other  
approaches that can be more 
powerful.    	

Deeper discussion of sequence 
evolution models.      	

We don't talk about statistical 
genetics, so we don't tell you how to  
do a GWAS, for example.   	

 We don't talk about deep neural nets 
or other complex  machine-learning 

models (beyond HMMs).    	
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• Other motif-finding methods
• Sequence evolution models (in depth)
• Statistical genetics
• Deep neural nets & other complex machine-

learning models
• ‘Non-linear’ (non-sequence based) computational 

biology, such as:
– Most proteomics, metabolic & signalling pathways, 

models for interacting molecules …
(See Genome 541, & courses in CSE, Stat, Biostat) 
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You could argue that all of the above are relevant in interpreting  genomes, so they're part of 
'linear' computational molecular biology.  So we don’t cover all of linear CMB.   Nor do we 
cover 'non-linear' computational biology,  which goes beyond genome sequences. For 
example, modelling the 3D  structure of a protein, metabolic and signalling pathways, 
models for  interacting molecules within a cell.    	

Many of these topics are covered in other UW courses. In Genome 541,  the sequel to this 
course, the content varies from year-to-year, but  in the past has often covered some of these 
topics; also courses in  computer science, statistics and biostatistics.    	

That concludes this overview lecture. In the next lecture we'll  discuss algorithms, and 
specifically a clever one called the suffix  array algorithm which you'll need to implement in 
the first homework  assignment.   	
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