
 Lecture 1: Overviews Genome 540 Phil Green

	

 Hello, everyone, and welcome to
Genome 540. I'm Phil Green, the
instructor. In this opening lecture I'll
give you some overviews that
hopefully will help to put the course
into context. 	

I'll start with some general comments
about the role of computation in
biology. 	

Then I'll give you my view more
specifically of computational
molecular biology, emphasizing in
particular the fundamental

importance of probabilities.	

 Then, because 540 is focused on computational methods for interpreting genomes, I'll
present a high-level, somewhat non-standard view of genome biology which emphasizes
sites — rather than, say, genes —as the fundamental units of functional information. This
viewpoint turns out to be useful when we're developing probability models for the genome. 	

Next, a summary of genomicists' tasks and the roles that computation plays in those. 	

And finally, an overview of the course content and how it fits in with the computational
tasks that you need for interpreting genomes, including some comments on what's not in
the course and why.	

Page ￼ of ￼1 29

1

• Computation in biology
• Computational molecular biology

– Probabilities
• Interpreting genomes

– Genome biology
• Sites

– Genomicists’ tasks
– Computational tasks

• This course

Lecture 1: Overviews

 Computation in biology Lecture 1: Overviews Phil Green

	

Let's start with three broad ways to
think about the relationship between
computation and biology. 	

One is that it's like the author list on a
scientific paper. Biology is the senior
author, which originates and
motivates the work and provides the
judgment to guide it to a conclusion.
Computation is the junior author,
which carries out much of the work,
provides the energy and a lot of the
ideas, but may lack the experience to
know what's important and what's
not. 	

If you want to do computational biology, you really should try to be like both authors. So in
particular, if you come from a computational rather than a biological background, you
should spend a fair amount of time trying to understand the biology: taking courses,
reading textbooks and current literature, talking to biologists, and in general trying to
develop an intuitive feel for the science — learning to think like a biologist. Even if you're
not going to do research in biology it's still worth learning as much about it as you can,
because it's an amazing, beautiful, and important intellectual achievement. 	

A second way of thinking about computation is as technology — like microscopes, or
sequencing, or CRISPR, for example. It enables you to make scientific discoveries that would
be difficult without it. And like these other technologies, computation actually alters the
course of the science, by changing the kind of problem that scientists think about once they
realize what it can do. In fact it's pretty clear you could not do biology as it's currently
practiced without powerful computational methods. Analyzing, or even collecting massive
data sets of the sort that are now central to molecular biology would not be possible. 	

At the same time though, technology should not displace the science: it’s not an end in itself.
People coming from computational backgrounds tend to prize novelty and aesthetics: a
new, clever and elegant algorithm is something to strive for. But while those can be useful
criteria, they should never override the utility. The purpose of the computational technology
is to make biological discoveries, and that's frequently going to involve sacrificing both
novelty — because an old method more often than not does the trick — and elegance,
because the analyses needed may be ‘kludges’ stringing together a series of different steps.
This may not be very satisfying to someone trained to appreciate the beauty of mathematics
and computer science but it typically is just what you need to analyze biological systems
(which are themselves kludges produced by a haphazard evolutionary process!)	

Page ￼ of ￼2 29

• Computation is ‘junior author’

• Computation is technology
– Technology helps drive science
– … but should not displace science

• not an end in itself
• novelty & aesthetics should not override utility

2

Computation and Biology

 Computation in biology Lecture 1: Overviews Phil Green

A third way to think about
computation is in terms of the role it
plays in the scientific method. In
general, computational analysis can't
answer a biological question
definitively, rather it generates
hypotheses that need to be tested by
experiments, according to the
scientific method. You of course want
these hypotheses to have some
reasonable chance of being correct in
order to persuade somebody —
which could be yourself, or a
collaborator, or some other biologist
— to carry out the experiments. One

of the reasons for using probability models (which we'll be discussing later in this lecture)
for your computational analysis is that they allow you to make a strong case that a particular
pattern is unlikely to be due to chance, and therefore is worth some experiments. 	

An interesting point here, though, is that sometimes experiments may not be practical, and
computational evidence for a biological phenomenon might be the best you can do. This is
because evolution can act on extremely subtle effects. For example, a mutation having a
fitness effect size of 0.001 — which means the difference between leaving 999 rather than
1,000 descendants after some number of generations — would likely be very difficult to
confirm in the lab, but is enormous from the perspective of evolution. In fact, population
genetics theory tells us that a fitness effect size of the order of 1 / N, where N is the effective
population size, is enough for evolution to go to work on. An experimental test of such an
effect size (1 / N) would require you to work with the entire population of the species!
Furthermore, most populations experience a variety of different environments, and it's
unlikely you could reproduce all of them experimentally. So even much larger effect sizes
may sometimes not be confirmable in the lab, if you can't reproduce the relevant
environment. Evolution is a much more thorough experimentalist than humans can be, and
for some of its experiments, computational analyses of the genome may provide our most
convincing evidence.	

Page ￼ of ￼3 29

3

• Computational analysis generates hypotheses
– which must ultimately be tested by experiment.
– But hypotheses should

• have some reasonable chance of being correct, and
• carry indication of reliability.

– Some computational findings may not be testable in lab
• Evolution is a much more sensitive experimentalist

Computational molecular biology Lecture 1: Overviews Phil Green

	

Now let's focus a little more
specifically on computational
molecular biology (CMB) . I think of it
as basically a convergence of three
fields: molecular biology — that part
of biology that tries to understand
cells and organisms as systems of
interacting molecules — and two
computational fields: statistics and
computer science. 	

Of these, molecular biology is
paramount: It poses the questions
and judges the answers (like a ‘senior
author’). Whether or not your work

as a computational biologist is worthwhile ultimately comes down to whether or not you're
making a contribution to the biology. 	

The line between statistics and computer science has become increasingly blurred over the
past few decades — computer science has become more statistical and statistics has
become more computational— but there are still non-trivial differences in their perspective
(and in most universities, they are still separate departments). The differences partly reflect
a tension between what you might call ‘fuzzy thinking’ and deterministic thinking. The real
world is ‘fuzzy’, in two ways: first, it's extremely complicated; and second, the underlying
physical laws are in part probabilistic in nature (the same inputs can have different
outputs). However, our brains construct simplified models of reality that are mostly
deterministic, with causes and effects. Our scientific theories to some extent reflect this
deterministic thinking but they also try to address the fuzziness. 	

In CMB, computer science comprises the deterministic aspects of computation —
computers, programming languages, data structures, and algorithms— while statistics
addresses the fuzziness, in particular contributing probability models for biological
processes. By helping to simplify the biology and make it more manageable, such
computational models play a role similar to that of experimental models such as model
organisms and model systems. 	

Because biological systems are much more complex than the systems that physicists and
chemists tend to study, biologists have had to become more comfortable with ‘fuzzy
thinking’, and consequently statistics in some ways has a closer relationship to the biology
than computer science does. This close relationship goes back at least to the early 20th
century, when both genetics and modern statistics were being developed, and a symbiotic
relationship between them emerged: Geneticists needed statistics to interpret their data.,
and statisticians looked to genetics as a source of interesting problems. This was long before
it was known that DNA was the genetic material, or electronic computers existed. 	

Page ￼ of ￼4 29

44

Computational Molecular Biology

Molecular biology
poses questions, judges answers

Statistics
Probability models for
biological processes

Computer science
Deterministic methods for
computing:
Computers & languages
Data structures & algorithms

Computational molecular biology Lecture 1: Overviews Phil Green

For computer scientists, fuzzy thinking is less congenial, and it can be a bit unsettling to
learn that biologists don't even agree with each other on the definition of a gene — one of
the most fundamental concepts in genome biology! 	

In the next lecture we'll talk more
about algorithms, but here I’d like to
say a little more about the role of
probabilities in biology. Probabilities
are important at two different levels: 	

First, at the fundamental level of
physical laws for living organisms
viewed as systems of interacting
molecules, and second, at the higher
level of evolutionary processes. 	

	

At the fundamental physics level you
have, first, quantum mechanics and
quantum electrodynamics, which
determine the structure and pairwise
interactions of individual atoms and
molecules. In the prevailing
‘Copenhagen interpretation’ of
quantum theory, the wave aspect of
matter and radiation provides
probabilistic information about
particle locations, motions, and
interactions	

Systems of interacting molecules are
complicated enough that there's no
hope in practice of directly tracking

the individual molecules (their coordinates, speeds, and so forth); rather, you have to
understand the properties of the system by looking statistically at the ensemble of
molecules. The relevant theory for this is statistical mechanics and thermodynamics. Again,
fundamentally probabilistic.	

 These quotes from the two physicists generally considered the greatest since Newton bear
on this issue of probabilities in physical laws. Maxwell is best known for putting the classical
laws of electromagnetism in final form, the so-called Maxwell's equations. This was prior to
the quantum era, and his laws are deterministic —they’re about waves, but probabilities
don't come into them. Nonetheless, he says “he true logic of this world is in the calculus of
probabilities.” Now, in fact, Maxwell was also one of the developers of statistical mechanics
— among other things, he helped discover the so-called Maxwell-Boltzmann distribution of

Page ￼ of ￼5 29

66

Probabilistic Physical Laws

• Structure & pairwise interactions of atoms & molecules:
– quantum mechanics & quantum electrodynamics

• Systems of interacting molecules:
– statistical mechanics & thermodynamics

“The true logic of this world is in the calculus of probabilities”
– James Clerk Maxwell

“I cannot believe that God plays dice with the cosmos” –
Albert Einstein
– but two of his four great 1905 papers dealt with statistical aspects

of nature (photoelectric effect & Brownian motion)!

55

Biology involves probabilities,
at several levels:

• Fundamental physical laws governing
molecular systems

• Evolutionary processes

Computational molecular biology Lecture 1: Overviews Phil Green

velocities of molecules in gases — and this quote suggests that he regarded that work as
perhaps more central to our understanding of how the world works. 	

On the other hand there's this contrasting quote from Einstein: “I cannot believe that God
plays dice with the cosmos”. Einstein did not like the idea of fundamental physical laws that
were probabilistic in nature, and as a result, he never accepted quantum mechanics.
Nonetheless if you look at the four great papers he published in 1905 (his ‘miracle year’) ,
although two of them (on special relativity and E = mc2) had nothing to do with
probabilities, the other two are both statistical in significant measure. One, on the
photoelectric effect, helped instigate quantum mechanics; and the other explained
Brownian motion of dust particles in a water drop under the microscope as the statistical
effect of collisions with enormous numbers of water molecules (this work helped persuade
many previously sceptical scientists that the atomic theory was in fact valid). 	

At a higher level, probabilities are
important in evolutionary processes:
in mutations as random changes to
the DNA, transmission of DNA from
parent to offspring in populations of
individuals, inheritance of alleles (via
chromosome segregation) and so
forth. And then random aspects of a
variable environment. So, since
genomes are shaped by evolution,
you can't really understand them
without probabilities!	

Page ￼ of ￼6 29

77

Probabilistic Evolutionary Processes

• Mutations (imperfect replication)
• Transmission of DNA from parent to offspring in

populations of individuals
• Random aspects of environment

Probabilities have shaped the genome!

 Genome biology Lecture 1: Overviews Phil Green

Now let's move on to interpreting
genomes, starting with a high-level
overview of genome biology.
Genomes undergo two fundamental
processes, both of which involve
copying: replication, which is the
copying of the entire genome into
new DNA molecules, and
transcription, which is the copying of
parts of the genome into RNA
transcripts. 	

The functional information in the
genome is in the form of what I'll call
sites., which are short sequence

segments (generally from about three to about 15 bases) that bind to an RNA or a protein
molecule, which I'll call the reader, to help mediate some function. 	

Sites can be grouped into two broad categories: Those that act (are read) at the DNA level,
and those acting at the RNA level. 	

Now, those of you who’ve studied genome biology are probably wondering how I can talk
about the functional information in the genome without mentioning genes. One reason I'm
not doing that here is the fact mentioned earlier, that the definition of a gene is not
universally agreed upon; but a more important reason is that sites are really more
fundamental. Genes, as well as other genomic features, are comprised of sites. And as we'll
see, thinking in terms of sites is quite helpful in developing probability models of the
genome. .	

So we view a gene as
a set of sites, and you
can see a lot of them
here. There are sites
acting at the DNA
level that control
transcription. The
unprocessed RNA
transcript has sites
acting at the RNA
level for splicing out
the introns and
polyadenylation, and
the processed
transcript includes a
5’ untranslated
region with a
translation start site
and possibly some

Page ￼ of ￼7 29

Genome biology overview
• Genomes undergo two fundamental

processes (both involve copying!):
– Replication
– Transcription

• Genomic functional information is in the
form of sites:
– Short (~3 − ~15 base) sequence segments that

bind to an RNA or protein molecule (the
reader) to help mediate some function

• Sites may act (= be read) at the DNA or
RNA transcript level

8

9

(Protein-coding) Gene Structure
in Eukaryotes

mRNA (spliced)

Gene

Transcription
start site Exon

3’ splice site
5’ splice site

Coding sequence (ORF) –
begins with start codon (AUG),
ends with stop codon (UAA,
UAG, or UGA)

Transcription direction

5’ untranslated region
3’ untranslated region

Polyadenylation site
Intron

PolyA tail

Upstream regulatory
region

 Genome biology Lecture 1: Overviews Phil Green

translational regulatory signals; a coding sequence which is comprised of an array of codon
sites; and a 3’ untranslated region that may include, for example, microRNA binding sites
and protein binding sites that play roles in targeting the transcript within the cell,
controlling its degradation and so forth. 	

The ambiguity regarding the definition of a gene basically comes down to which sites do you
choose to include in the gene and which do you not, but that becomes an uninteresting
semantic issue once you focus on sites rather than genes as the fundamental units. 	

There are some subtleties in the
definition of sites. One is that
binding of an RNA or protein reader
to some sequence is generally not
sufficient in itself to make it a site;
the binding event also has to help
mediate some function within the
cell. In general, that's going to involve
the reader interacting with some
other protein or RNA molecules to
carry out some cellular process. 	

Site sequences are generally short
enough that they occur frequently in
random sequence. A transcription

factor binding sequence for example might be just 6 or 7 bases, short enough that you can
expect to find it by chance, every few thousand bases. Such chance occurrences may be
recognized by a reader molecule and transiently bound without triggering any function —
so aren’t sites, by our definition. So there is presumably a fair amount of nonproductive
binding to ‘dummy sites’. But having short binding sequences also means that it's relatively
easy to create new instances of potential sites via mutation. So from evolution's perspective,
small size is a useful feature, rather than a bug. But it does increase the computational
challenge of finding the functionally important ones. 	

A second point is that sites aren't necessarily active in every cell. The reader, or its
interaction partners required to carry out some function, may not be available (not
expressed, or inactivated in some way — for example, via phosphorylation, or by being
bound to another protein that prevents binding to the DNA or RNA); or the reader may be
present but prevented from binding because the DNA is methylated or already bound by
some other protein (e.g. chromatin proteins, or readers at overlapping sites). 	

A third point is that although sites constitute the functionally important part of the genome,
the non-site DNA (or background DNA, as we'll sometimes call it) may still carry important
information. In particular, the distance between nearby sites can influence interactions
between reader molecules, which may be important for function. So the DNA that's between
the sites may be important, not for its own sequence, but as a spacer for positioning the
sites relative to each other. In addition, the background sequence is important for
estimating mutation rates. That's useful even if you're only interested in the sites, because

Page ￼ of ￼8 29

Sites
• Binding ≠ reading

– chance non-functional occurrences of site-like
sequence may be transiently bound
• inefficient, but evolutionarily significant!

• A site may be inactive in some cells
– Reader may be absent, inactivated, or obstructed

from binding (sites can overlap!)
• Background (= non-site) sequence carries

information:
– site spacing
– mutations

10

 Genome biology Lecture 1: Overviews Phil Green

one important way to detect sites is as regions that are relatively depleted of mutations due
to purifying selection.	

 Sites are distributed non-randomly
within the genome, something we’ll
need to take into account when
developing probability models. First,
sites recur, in the sense that a given
reader will generally recognize
multiple different sites. Once
evolution has gone to the trouble of
creating a particular reader, it tends
to reuse it — for example, a given
transcription factor is typically used
in the expression of several different
genes. 	

The different sequence instances of a
site usually vary somewhat. The sequence logo (which we'll see an example of shortly) is
one nice way of representing this variation in a manner that conveys frequency information.
Motifs, which are often used but less informative, indicate the possible nucleotides at each
position but without frequencies. 	

Sites also typically tend to cluster (we’ll call the clusters features): several sites, with the
same or different readers, may act collectively to carry out some function. Often there are
positional constraints within the cluster. So for example, coding sequence is made up of
multiple codon sites, and the positional constraints there are very strict since each codon
immediately follows the previous one with no intervening bases and no overlap. Other
constraints (for example, between splice sites) can be more lax. 	

A gene, as we saw before, is a cluster of sites involved in expressing a particular transcript.
Expression of a protein coding transcript involves not only causing the transcription to
occur, but also the processing of that transcript (e.g. splicing) and its translation into
protein. So several steps are involved in getting to the end product, which is a protein
molecule or molecules. There can also be additional steps in processing non-coding
transcripts (for example, modification of nucleotides in tRNAs).	

 	

Page ￼ of ￼9 29

• Sites typically recur:
– multiple sites within a genome, with possibly varying

sequences, may be recognized by the same reader
• Sequence variation may be represented by a motif or

(better!) a sequence logo

• Sites typically cluster (into ‘features’):
– several sites, with the same or different readers, acting

collectively to carry out a function
• site ordering, orientation and spacing may be important

– gene = cluster of sites involved in expressing a
particular transcript

11

Sites: genomic distribution

 Genome biology Lecture 1: Overviews Phil Green

 How much of the genome do the
sites represent? In bacterial
genomes, that fraction seems to be
quite high; typically, 70% or more of
the sequence, might be protein
coding, and when you add in RNA
genes, transcription factor and other
regulatory sites, and a replication
origin, you're getting up close to 90%
or more — not 100%, because there
may be transposons and other
parasitic DNA elements, and some
DNA that's just playing a spacer role
— but the vast majority of the
genome does seem to be functional. 	

When you go to more complicated organisms, in particular the human genome, the
situation is quite different. There are some ‘intelligent design’ proponents — including
some scientists — who believe that either God, or evolution, has efficiently structured the
human genome to be almost entirely functional. But the current prevailing view among
most genomicists, based on comparing genomes to each other to estimate the fraction under
purifying selection, is that only about 5% to 10% of the human genome is functional.
However, a precise answer is hard to get, because of variability in mutation rates across the
genome. and my own belief is that it's even less, around 2% — 60 million base pairs, or
roughly 20 times the size of a typical bacterial genome. That’s still a lot of DNA: After
subtracting out the 35 million or so bases in protein-coding sequences and known
functional non-coding RNAs, there’s enough left to allow an average of about 1200 bases of
regulatory sequence for each of the 20,000 genes — much more than has been found even
for intensively studied genes.	

Well, if the sites are less than 10%, what's the other 90% or more? At least 50% is
identifiable as transposable elements, retroviruses, processed pseudogenes created by
reverse transcription of RNA transcripts back into the genome, and ‘dead’ genes: sequences
that look like they were once genes, but lack transcripts and have picked up enough
mutations that they are clearly no longer functional. Much of the remaining 40% or so
probably arose in the same way (from transposons etc) but over hundreds of millions of
years has accumulated enough mutations to obscure the original source. 	

Why such a difference between human and bacterial genomes? There are several reasons
why selection for efficient genome organization ought to be much stronger in bacteria than
in humans. One factor is relative population sizes. As I mentioned earlier in the lecture,
according to population genetics theory evolution acts on fitness differences as small as 1/
N where N is the effective population size of the organism, so more sensitively for organisms
with large populations. Humans, for most of their history, seem to have had a fairly small
effective population size numbering in the tens of thousands, far less than bacteria. 	

Another factor is reproductive lifespan. Many bacteria grow fast enough in nutrient-rich
conditions that replication of the DNA is rate-limiting, and one expects there to be intense

Page ￼ of ￼10 29

• Average site density (= the fraction of the
genome that is functional) may be quite small!
– < 10% of human genome

• remaining > 90% mostly transposon relics, ‘dead’ genes &
processed pseudogenes

– strength of selection for ‘genome efficiency’ is
expected to depend on

• Population size
• Reproductive life span
• Genome size

12

 Genome biology Lecture 1: Overviews Phil Green

competitive pressure to keep replication time, and therefore genome size, as small as
possible. 	

Finally, as the genome gets larger, each added transposable element (for example)
represents a diminishing percentage of the total size, and so one expects selection against it
to correspondingly decrease. The human genome, at 3 billion bases, is 1,000-fold larger than
a 3 megabase bacterial genome, and an added transposon that doesn’t interfere with site
activities has proportionately smaller impact .	

Consistent with the above, other eukaryotes such as yeast, Drosophila, C. elegans, fish, tend
to be intermediate between bacteria and humans with respect to population size, life span,
and genome size, and they're generally also (as predicted by the above considerations)
intermediate in the estimated functional proportion of the genome. 	

Also consistent with this idea that selection for efficiency has been weak in humans is the
finding that in many human cells a surprisingly high fraction of newly synthesized protein
molecules misfold and then are immediately degraded. This is a major waste of cellular
energy, probably, in fact, much worse than the energy lost in replicating an unnecessarily
large genome. 	

Recall that sites may act either at the
DNA level or at the RNA level. The
DNA level sites usually have protein
readers, and they help carry out or
regulate one of the two fundamental
processes, replication or
transcription. 	

Replication-associated features (site
clusters) include replication origins,
centromeres, and telomeres. I
include telomeres here because one
of their major roles is to ensure the
faithful replication of the ends of
linear chromosomes; and

centromeres, because they are involved, not in DNA replication per se, but in ensuring the
faithful distribution of the products of DNA replication to daughter cells. 	

Transcription involves several types of feature: promoters, enhancers, and suppressors. The
readers in this case are called transcription factors.	

Page ￼ of ￼11 29

DNA sites

• Readers are usually proteins
• Help carry out or regulate a fundamental

process
– Replication

• Replication origins, centromeres, telomeres (each having
multiple sites)

– Transcription
• Promoters, enhancers, suppressors (each usually having
multiple sites, with readers being transcription factors)

13

 Genome biology Lecture 1: Overviews Phil Green

Let’s look at an example of a transcription factor binding site. This figure is taken from the
website of Tom Schneider, who invented sequence logos of the sort depicted here at the
bottom. The sequences are from the genome of a bacterial virus (or phage), lambda, which
infects E. coli . Each sequence consists of a cluster with two binding sites, each of length 9
bases, for the transcription factor Cro (a different transcription factor, cI, also recognizes
these sites). There's a 1-base spacer (always the same size!) between the two sites, so the
total length of each cluster sequence is 2 x 9 + 1 = 19 bases. 	

There are 12 different sequences here, but they correspond to only 6 different clusters in
the lambda genome, because both DNA strands are given for each cluster. So sequence 2
here is the reverse complement of sequence 1, 4 is the reverse complement of 3 and so on. 	

Page ￼ of ￼12 29

14

From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html

 Genome biology Lecture 1: Overviews Phil Green

To fully understand what's going on here, we need to picture the protein binding to the DNA
in three dimensions. First, recall the two-stranded molecular structure of DNA. This slide
shows it schematically on the left, indicating the phosphate-sugar backbone on the outside
and the A:T and C:G base pairs on the inside. The two strands run in opposite directions: the
strand on the left has its 5' end on the top and its 3' end on the bottom, whereas the strand
on the right has them reversed (the sugars are upside down).	

	

 	

Page ￼ of ￼13 29

1515

National Human Genome Research Institute (NHGRI) http://www.nhgri.nih.gov/DIR/VIP/ by artist Darryl Leja

 Genome biology Lecture 1: Overviews Phil Green

Now, on the left above is a space-filling model of the atoms in a DNA molecule. Note first of
all that it is a double helix, with the two strands winding around each other and base-
pairing with each other. These two ridges are the sugar-phosphate backbones of the two
strands, and the base-pairs you can see to some extent in the grooves. There are two
continuous grooves: the so-called major groove here, which goes around the back and re-
emerges here, and the minor groove here, going back behind and coming up here. Every
base shows up partly in the major groove and partly in the minor groove. Although you
can't really make out the base pairs, each full turn of the helix — so for example from a
point here to a point here, or a point here to a point here — corresponds to about 10.5 base
pairs. 	

Note also that the helix is right-handed, meaning that if you point the index finger of your
right hand along a ridge of the helix, your thumb points in the vertical direction (up or
down) that the ridge is going. If you try that with your left hand instead, the thumb points in
the wrong direction. 	

Most transcription factors bind primarily in the major groove, because there are more
opportunities to make contacts with atoms in the nucleotide bases there, although there are
some that bind within the minor groove, or within both grooves. 	

Above on the right is a stereo image: if you cross your eyes to make the two images
converge you can see this in 3D. What's depicted is two identical copies (one in blue and
one in yellowish-green) of one of these proteins (cI or cro, I'm not sure which) binding to

Page ￼ of ￼14 29

16

from http://www.dna-dna.net/

from http://gibk26.bse.kyutech.ac.jp

 Genome biology Lecture 1: Overviews Phil Green

the double helix at one of the sequences depicted on the earlier slide. Both are making
contact with the major groove but also with each other, and in fact that interaction with
each other helps to increase the overall stability of both molecules binding to the DNA sites,
so it's important. For this particular protein, the contact between the two copies requires
one to be flipped around with respect to the other. That means that the DNA sites that they
bind to are also flipped around (in reverse orientation). 	

Now let’s return to the multiple site sequences. Recall that there are 6 different clusters,
and the two sites in each are in opposite orientations so that the two protein molecules can
contact each other. To compare all twelve sites, you need to include the reverse
complement sequences so that the right hand sites are put in the same orientation as the
left hand ones. Note that for convenience each site is represented by a single-stranded
sequence, but the protein itself contacts both strands simultaneously. 	

So on the left side here you have the 12 9-base sites all in the same orientation; on the right
you have the same 12 sites but now all in the reverse orientation. So the sequences on the
right (and the overall patterns) are the reverse complements of what's on the left. 	

Note that the site sequence is not invariant. At the bottom is a sequence logo, which
reflects the frequencies with which different nucleotides are used at each position. In all of
these sites you have a C here, and an A here; these presumably correspond to the most
important contact points with the protein; in the reverse complements you have a G here
and a T here (the complementary nucleotides, in the reverse order). Some of the other

Page ￼ of ￼15 29

14

From http://www-lmmb.ncifcrf.gov/~toms/sequencelogo.html

 Genome biology Lecture 1: Overviews Phil Green

positions appear to show somewhat weaker conservation and others appear free to vary
(including, as you'd expect, the spacer nucleotide between the two sites). 	

The logo is actually comparing two probability models, one reflecting frequencies with
which nucleotides are used in instances of the site, and the other the so-called background
probability model which gives the average frequencies of nucleotides at non-sites (or the
genome as a whole). The total letter height at each position indicates how much better the
site model fits than the background. In a sense this corresponds to the information the
protein needs in order to pick out a site from the rest of the genome. 	

The biology underlying site sequence variability is interesting and not always understood.
Some variability is presumably at positions where contact with the protein is weak or non-
existent, and so has little impact on the strength of binding. At positions where contact
does occur, some variability might be important in regulating the strength of binding (some
sites might need to be bound more tightly than others). 	

The curve that's depicted here has a spacing of 10.5 bases between peaks, and is intended
to reflect the fact that the proteins are binding on one side of the helix so you might expect
the contact points in the two site copies, and the most highly conserved bases, to show that
spacing. That seems to be approximately true here. 	

Another thing to note is that the total number of conserved positions in one site is small;
only about 3-4 bases — so it makes sense that you need a cluster of two of them to get some
specificity and stable binding.	

The second broad class of sites are
those acting at the RNA level, with
the reader recognizing the site within
a transcript (not the genomic DNA)
and thereby helping to carry out the
transcript's function. (Of course the
site's sequence is also present within
the genomic DNA, since the
transcript is a copy of it). Often, but
not always, the reader is itself an
RNA transcript. 	

 As we saw earlier, protein coding
transcripts contain a variety of sites. 	

There are also RNA transcripts that don't encode proteins but carry out some other function
in the cell -- for example tRNAs, ribosomal RNAs, spliceosomal RNAs, microRNAs, and a
variety of so-called lncRNAs (long noncoding RNAs). These all contain at least one type of
site that might seem a little strange, but fits the definition I'm using: namely 'stems' that
basepair one short sequence within the transcript to a complementary sequence within the
same transcript, and which thereby help to give the transcript a structure that is important
to its function. So these are sites for which the transcript is reading itself! 	

Page ￼ of ￼16 29

• Readers are often RNA
• Help carry out the transcript’s function

– in protein coding transcripts:
• Translation start sites, codons (reader = charged tRNA),

splice sites, microRNA binding sites, polyadenylation
sites, …

– in functional RNA transcripts:
• Stem structures (the transcript reads itself!), …

17

RNA transcript sites

 Genome biology Lecture 1: Overviews Phil Green

Here's an example illustrating some RNA sites involved in protein translation. 	

Within a protein-coding transcript the codons are 3-base sites whose readers are tRNAs. In
this case the codon AGU, which you look up in the table as the first base A, second base G,
third base U, so it's a serine codon. The reader is a tRNA ('charged' with the amino acid
serine) that has the complementary 'anticodon' sequence ACU (in 5' to 3' order). 	

Further, the tRNA, as a functional RNA in its own right, has a stem structure with sites
where the RNA base pairs internally to itself; and also additional sites, one of which is
recognized by the tRNA synthetase protein which covalently attaches a serine molecule to
the tRNA, and others which are recognized by proteins that modify some of tRNA's
nucleotides to stabilize it. 	

Serine has five additional codons in this table that are read by other tRNAs. Some tRNAs can
read more than one codon — in fact I think this tyrosine tRNA can read both of the tyrosine
codons, via wobble pairing — so there is sequence variability for some of these codon sites
similar to what we saw in the transcription factor case. 	

Of course the translation process involves this whole complex (charged tRNA + mRNA
codon) interacting with the ribosome and there are other sites in the tRNA and the coding
transcript that are recognized by various proteins within the ribosome. 	

Page ￼ of ￼17 29

18

 Genome biology Lecture 1: Overviews Phil Green

Here's another example: sites involved in the splicing process. First, the so-called 5' splice
site (meaning that it is at the 5' end of the intron). The reader is the U1 small nuclear RNA
that recognizes it by base pairing. This picture shows perfect pairing, but in fact typically
the pairing is not perfect, that is you don't have an absolutely required base at all these
positions within the transcript. So the U1 RNA sequence here can base pair with multiple
possible sequences here, and you have sequence variability as in the previous examples.
The U1 RNA has its own sites, including the stem structures that stabilize it, sites that
interact with protein components of the spliceosome, and so forth. 	

A little upstream of the 3' end of the intron there’s a branch site which is recognized by the
U2 snRNA. And then at the 3’end are other sites that are recognized by protein components
of the spliceosome. There are some constraints on site spacing but they are quite weak, as
indicated by the fact that intron sizes vary enormously. If the intron is too small, the splicing
machinery either can't recognize the intron at all or it can't process it correctly, so there is a
lower bound on intron size (about 70 to 80 bases in human genes, with rare exceptions).
But there's no corresponding upper limit and there are introns that are hundreds of
kilobases long.	

Page ￼ of ￼18 29

19

from http://departments.oxy.edu/biology/Stillman/bi221/111300/processing_of_hnrnas.htm

(Jonathon Stillman, Grace Fisher-Adams)

 Genomicists’ tasks Lecture 1: Overviews Phil Green

Given that view of the biology, in
order to interpret genomes,
genomicists first need to get the
genome sequence, and identify the
transcripts that are made from the
genome. Then they have to find the
sites, being mindful that sites can act
either at the DNA or at the transcript
level. On the following slides I'll say a
bit more about each of these. 	

Finally they have to illuminate the
molecular functions of the sites. This
is really the most open-ended and
difficult part, requiring a variety of

methods, and I won't try to cover it. One thing that's very helpful though is the fact that
sites recur, not only within one organism's genome but also between the genomes of
different organisms, and so once you've figured out the function for a particular site you
largely understand the function for many other occurrences of that site as well. 	

The main approach to finding the
genome sequence requires getting
reads, which are the sequences
(often with basecalling errors) of
short pieces of the genome, and then
assembling those to infer the
underlying genome sequence. The
assembly process involves, in
essence, finding sequence matches
between portions of the reads,
figuring out from these how the reads
overlap in the genome, and then
piecing the overlapping reads
together while identifying and
eliminating basecalling errors in

order to reconstruct the underlying genome sequence. 	

The main challenge in assembly is duplicate or nearly duplicate sequences within the
genome, which arise in evolution in several ways. One type is self-copying parasitic DNA
elements (such as transposons), which typically are a few hundred to a few thousand bases
long. Another type is segmental duplications arising from errors in DNA replication, which
can be up to several megabases. 	

Consequently, when two reads have portions that are highly similar, one has to consider the
possibility that they do not actually overlap within the genome but rather come from
different copies of a duplicated segment. The different segments often have acquired
sequence differences via mutation that in principle should help to identify spurious

Page ￼ of ￼19 29

Genomicists’ tasks

• Find the genome sequence

• Find the transcripts

• Find the sites ...

• … and their functions …

20

Finding the genome sequence

• Get reads (short, overlapping, error-prone
pieces of the sequence)

• Assemble : identify read overlaps, infer
underlying sequence

• Main challenge:
– (Near-)duplicate sequences

21

 Genomicists’ tasks Lecture 1: Overviews Phil Green

overlaps. But read basecalling errors complicate this, and evolutionarily recent duplicates
can be essentially identical. 	

A variety of assembly strategies have been developed that try to cope with the duplicate
segment issue. Computationally, it helps to have probability models for both basecalling
errors and the mutation process. But the 'killer technology' finally allowing assembly of
essentially complete human genomes has been the advent of very long reads (longer than
most duplicated segments). Even with those however comparing reads to each other
remains an important requirement. 	

 Now, finding the transcripts,
sometimes called RNASeq. Since it's
easiest to sequence DNA, RNASeq
involves first of all making cDNA
copies of the processed mRNA
transcripts using reverse
transcriptase, and then getting
sequence reads from the cDNA.
Typically these reads are then
aligned to the genome, which allows
targeted assembly to be done for
reads mapping to the same genomic
region in order to reconstruct full
transcript sequences from the region. 	

There are a number of issues here that collectively make finding all the transcript
sequences a more challenging problem than sequencing the genome. 	

One is that many transcripts can be spliced in more than one way ('alternative splicing'),
resulting in multiple isoforms that may encode somewhat different proteins. Different
isoforms share parts of their sequences with each other, which presents an assembly
problem similar to that presented by duplicate segments in genome assembly. 	

Another issue is expression bandwidth: genes may be expressed at very different levels,
with some transcripts several orders of magnitude more frequent than others. This greatly
increases the amount of sequencing that must be done in order to be sure of getting the
rarest transcripts. That issue doesn't really arise in genome sequencing since all portions of
the genome are equally represented in the starting DNA from which libraries are made
(although library construction can sometimes introduce biases!) 	

Another issue is that expression level, and to some extent splicing, depends on the cell type.
So you have to make cDNA libraries from many different cell types to maximize the chance
you're getting all isoforms of all genes. 	

Yet another problem is that at least some transcripts are non-functional. Some transcripts
from protein-coding genes result from splicing errors (which are common enough that
there is a cellular process, nonsense-mediated decay, for detecting and degrading them).
Most lncRNAs, which by definition lack protein coding potential, also currently lack any
other known function within the cell. Novel functions have been discovered for a few of

Page ￼ of ￼20 29

Finding transcripts (“RNASeq”)
• Get reads from cDNA copies of the processed

(spliced + edited) transcripts
• Align to genome sequence
• Assemble to infer transcript sequence
• Main challenges:

– Expression bandwidth
– Transcripts may be processed in more than one way

(isoforms)
– A transcript may be non-functional!

22

 Genomicists’ tasks Lecture 1: Overviews Phil Green

them, and may be for others. But given that selection for efficiency appears to be relatively
weak in the human genome, it's also quite plausible (even likely!) that most lncRNAs are
simply transcriptional 'noise'. Alternatively many of them may be byproducts of
transcriptional events in which the act of transcription is important because it remodels the
chromatin (which may be important for expression of nearby genes), but the transcript
itself is non-functional. In such a situation the functional sites of interest would be the
transcription-inducing sites acting at the DNA level, and not RNA-level sites in the
transcript. 	

A harder problem is to find the sites.
One method that a lot of work has
gone into, for example in the ENCODE
project, is the direct detection of
binding events. One approach for
this is to use antibodies (or some
kind of tagging) to a particular
transcription factor to isolate that
factor bound to DNA and then
sequence the DNA. A similar strategy
could be used for other DNA binding
proteins, and presumably also for
RNA-binding proteins. This approach
seems to be limited to readers that
are proteins, and it requires some

knowledge of what they are; but a more serious objection is that, as we discussed earlier,
you can have binding without it being functional so the sequences you get may include non-
sites. 	

A somewhat complementary computational approach is to look for clusters of recurring
motifs, not only known ones from the binding studies but also novel ones which have
similar lengths, distributions of conserved positions, nucleotide composition, and clustering
patterns to the known ones. Because site motifs are short they occur often by chance, so
small clusters (of 1 or 2 sites) may not be reliably detected. 	

So both of those methods are error-
prone to some degree. A different
and generally more definitive
strategy (although with its own
limitations!) is to compare genomes
that differ from each other and try to
relate the sequence differences to
phenotypic differences (in
physiology, or other organismic or
cellular characteristics). This can
point you both to the sites and,
sometimes, to a functional role for
specific sites. 	

Page ￼ of ￼21 29

Finding sites

• Direct detection of binding events (e.g. ChIPSeq)
– but binding may be non-functional!

• Computational search for clusters of recurring
motifs
– but motifs occur frequently by chance, in any large

genome!

23

• a lab organism & a singly mutated variant with an
altered phenotype
– the mutation must then alter (or create!) a site

• or alter site spacing
– and the phenotypic change illuminates its function
– but remember that cells with identical genomes can

sometimes have different phenotypes!
• Tissues in multicellular organisms

• members of a natural population
– Usually multiple genomic and phenotypic differences
– find correlations (of recurring differences) to identify

sites that affect a particular phenotype. 24

Compare genomes of …

 Genomicists’ tasks Lecture 1: Overviews Phil Green

The key point is that a difference in phenotype usually means that there is a sequence
difference affecting sites. For phenotypes at the cellular level you have to be a little careful
because of the fact mentioned earlier, that for a variety of reasons sites may vary in activity
across cells and so cells with identical genomes can nonetheless have different phenotypes.
But assuming you can control or check for that, phenotype differences usually imply
sequence differences that either alter a site's activity or create a new site. Insertion or
deletion mutations in background sequence between two sites could also have a phenotype
by altering site spacing, but that's not an issue with point mutations. 	

In experimentally manipulable organisms (or cells) you can in principle find sites using
CRISPR (for example) to systematically make mutations and assess phenotypes. Of course
this is quite challenging on a genome-wide scale, and more seriously it may not actually find
all sites because (as previously discussed) our own ability to assess phenotypes in the lab is
much less sensitive than evolution's. 	

Another approach is to leverage naturally occurring mutations by comparing different
members of a population. The problem here is that generally any two individuals have
multiple sequence differences and multiple phenotypic differences, so associating
phenotype to genotype is challenging. What you have to look for is correlations of
recurring differences — shared phenotypes between individuals having shared genotypic
changes. GWAS studies do this in a targeted way. But GWAS typically does not, at least by
itself, pinpoint the affected site because genomic variants in linkage disequilibrium with
each other often have similar correlations with the phenotype.	

Finally, you can compare different
species. In this case you will have
many sequence differences and
many phenotype differences, the
numbers depending on how closely
related the species are. We again
expect phenotype differences to
largely reflect differences in site
content, i.e. sites present in one
organism but absent from the other.
Conversely, shared sites should
typically correspond to shared
aspects of phenotype. 	

Since background (non-site)
sequence is not under purifying selection, it accumulates mutations more rapidly than site
sequences do. For very distant organisms, the density of accumulated mutations may make
alignment of background impossible; for closer organisms, it may be possible, but shared
sites should still be detectable as having higher similarity (greater conservation, due to
purifying selection) between the species than the background. So in both cases the
alignment can give us information about shared sites, but it says essentially nothing about
lineage-specific sites underlying the differences between the species.	

Page ￼ of ￼22 29

• different species
– Many differences
– atypically similar (= “conserved”) regions likely

represent site clusters in which mutations have been
selected against (“purifying selection”)

• and likely have similar functions in the two species
– But many sites may have been lost, and created, in

each lineage

25

 Genomicists’ tasks Lecture 1: Overviews Phil Green

Illustrating that, this figure from Adam Siepel's paper on his program PhastCons depicts
alignments of a particular region in the human genome to four other vertebrates: mouse,
rat, chicken and fish. Down here we see the sequence, up here a schematic indicating
aligned segments. You can see that the alignments to chicken and especially to fish are
pretty much confined to exons in the genes in this region, with a little bit of surrounding
sequence that may include some regulatory sites. The alignments to our fellow mammals
mouse and rat are much more extensive, which could be partly due to shared mammalian-
specific sites but is mainly due to the background sequence still being alignable. Within the
aligned portions there are some regions, almost certainly clusters of shared sites under
purifying selection, that stand out as having a much higher degree of conservation,
indicated by these bars here. 	

Page ￼ of ￼23 29

26

from Siepel A. et al. (2005). Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034-50.

 Computational tasks Lecture 1: Overviews Phil Green

 Hopefully, you'll have noticed in the
preceding survey of genomicists'
tasks that there are some recurring
computational themes. 	

One is comparing (and aligning)
sequences: Sequence assembly
involves comparing reads to reads;
variant detection and transcript
assembly involve comparing reads to
genomes; and finding evidence of
shared sites between species involves
comparing genomes to genomes. 	

The appropriate alignment method
depends on how similar the sequences are. In these first two cases the sequences are highly
similar to each other, with isolated single-base differences from base-calling errors and
mutational variants, and (in the case of transcripts aligned to the genome) isolated large
gaps corresponding to introns. In such cases, methods of the sort we'll discuss in the next
lecture allow you to quickly find large perfectly matching segments which can then be
easily extended to alignments. 	

 However the last case, involving distantly related genomes, or genes, requires more
sensitive methods which we'll discuss later in the course. 	

 A second recurring computational
requirement is models — simplified
representations of the genome
sequence, sequence evolution, and
alignments that can guide
computational analyses. To
computationally find sites within
genome sequences, we'll want to
model sites and site clusters, as well
as the non-site background. To find
shared sites within genome
alignments, we'll want to
computationally model mutation and
purifying selection. In addition, to
find the alignments themselves we'll

need a model to tell us how to do the scoring of an alignment. 	

It will turn out that the models we develop for the above purposes are helpful in analyzing
not just the sequences, but also various types of lab-generated 'linear' data relevant to
genome interpretation -- for example read depth, or protein binding information. 	

 	

Page ￼ of ￼24 29

• Computational models of
– Genome sequences

• sites, site clusters, and “background”
– Sequence evolution

• Evolutionarily related sequences
– Alignment scoring

• Conserved vs neutrally evolving regions
– Other types of ‘linear’ data associated to the

genome (e.g. read depth)

28

Some major computational tasks
• Comparing & aligning sequences

– Reads to reads
• assembly

– Reads to genomes
• variant detection
• transcript assembly

– Genomes to genomes (or portions thereof)
• Evolutionary conservation

Appropriate alignment method depends on
how similar the sequences are!

27

 Computational tasks Lecture 1: Overviews Phil Green

So, what type of model? It won't be a
surprise that we favor probability
models, for several reasons: First,
genomes result from evolution, which
is inherently probabilistic as we
discussed earlier. Second, what
we're trying to do is basically to
detect site signals in a noisy
background, and for signal to noise
problems probability models are a
widely used and powerful approach.
Noise almost by its definition has to
be modelled probabilistically. And as
we've seen, there's a lot of variability
in site sequences, so it makes sense to

model that probabilistically as well. 	

Finally, probability models allow you to report a measure of confidence in your prediction,
which is important when you're trying to persuade someone to commit experimental
resources to confirming it. 	

There is still an important and non-
trivial question as to how complex
our models need to be. To start with,
here are a few illuminating quotes: 	

One, from the British statistician
George Box, is 'all models are wrong;
some models are useful'. He means
that the real world is complex
enough that no model can fully
capture it, and so any model is
'wrong' in that sense. That's
especially true of biological systems,
which are far more complex than
simple physical systems. But some

models are able to capture enough of the reality to be able to make some progress in
understanding it, and so are useful. 	

An older quote from the French poet and philosopher Paul Valery is 'What is simple is
always wrong. What is not [by which he means what is not simple] is unusable'. He's talking
more broadly about how we think about reality, and saying that we have no choice but to
simplify. 	

An even earlier quote from Einstein is 'Everything should be made as simple as possible,
but not simpler'. He's talking here about the process of trying to deduce physical laws, and
is saying, again, that you have to simplify reality to some extent, but that it's important to
simplify to the appropriate level.	

Page ￼ of ￼25 29

• “All models are wrong; some models are useful.”
– George Box

• “What is simple is always wrong. What is not is
unusable.” – Paul Valery

• “Everything should be made as simple as
possible, but not simpler.” – Albert Einstein (?)

30

Models: simplicity vs complexity

29

• We use probability models for this purpose:

– genomes are products of a probabilistic process
(evolution)

– detecting biological “signal” against “noise” of
background sequence or mutations

– measure of reliability

Probability Models

 Computational tasks Lecture 1: Overviews Phil Green

Okay, so all models are going to be oversimplifications to some extent, but that still doesn't
tell us how complex they should be. Generally, we start with simple models ('as simple as
possible' as Einstein would say), and then gradually make them increasingly complex to
capture more and more of the biology. 	

There's a lot of exciting research now
in developing and applying deep
neural nets, which are extremely
complex computational models that
can have literally trillions of
parameters, to all sorts of things
including molecular biology. So now
that we have the ability to do that,
what's the point of using anything
simpler? Well, complex models have
some significant disadvantages that
it’s important to be aware of. In
increasing order of seriousness: 	

 	

One, of course, is that they're more computationally challenging to work with. 	

A second is overfitting. The more parameters your model has, the more it will tend to
capture chance characteristics of the training data that you use for estimating the
parameters, with the result that the trained model although fitting the training set very
well, performs poorly on new data not in the training set. And of course it's the new data
that you're most interested in. Neural net developers are well aware of this issue of course
and have methods to try to avoid it, but those methods don't work perfectly. For example,
it has been found that deep neural nets for image classification typically fail on images to
which a small amount of pixel noise has been added -- such that a human has no problem
seeing what's in the image, but the neural net breaks down because it's 'overfit' to data
lacking such noise. ‘Hallucinations’ are probably another manifestation of overfitting. 	

Statisticians have given a lot of thought to the issue of overfitting in complex models, but I
think it's fair to say it's not really a solved problem yet — you can reduce overfitting, but not
eliminate it. Even simple models will tend to overfit to some extent. 	

Finally, and this I think is really the most serious issue, is that complex models are difficult
to interpret: what do the trillions of parameters mean? How does the model really 'work'?
Basically, a complex model is a 'black box'. You can run it on data, and get an answer, and it
might even be a reliable answer, but you don't understand why you got that answer. I'd
argue that this is in fact anti-scientific, since the goal of science is to understand reality and
a black box that simply makes predictions doesn't provide that understanding. The
machine learns, but we don’t! Again, people who work on deep neural nets recognize model
interpretability as an important issue, and have made some progress on it, but it's a very
hard problem and I think it's fair to say that it is far from being solved.	

Page ￼ of ￼26 29

• Computational challenge

• Overfitting

• (Lack of) interpretability

31

Some disadvantages of complexity

 This course Lecture 1: Overviews Phil Green

	

In this course we'll focus on
sequence-based computational
molecular biology; that is, general
methods for obtaining and analyzing
the information encoded in the
genome sequence. As I mentioned
earlier, many of the methods apply
more broadly to other types of linear
data associated with genomes. 	

We'll emphasize the underlying
biology, discussing along the way
some of the biological facts that are
relevant to the computational
methods. 	

We'll favor simple and interpretable probability models. This is not to discount the
importance of more complex machine learning models, but rather it's because if you're
going to be working with probability models at all it's good to start with simple ones. And
as we'll see you can get surprisingly far with those. I suspect there's a place for models that
are intermediate in complexity between deep neural nets and the fairly simple hidden
Markov models that we'll be talking about in this course -- still simple enough to be
interpretable, but incorporating more of our knowledge of the genome. But that's for future
research! 	

Regarding proofs: Typically I just try to give you some intuition for proofs, and either omit
the details altogether or include them on slides that I skip over in the lecture. This reflects
how I personally tend to absorb proofs which is to read through them several times, each
time getting some of the ideas. That doesn't fit very well into a lecture. Hopefully you won't
find that too frustrating.	

Here's a survey of the course content;
it is laid out in more detail on the
course web page. 	

 In the next lecture we'll discuss
algorithm generalities and then
suffix arrays and hash tables, which
are methods for finding exact
sequence matches. 	

Then, probability models for
background sequence. 	

Then, probability models for sites,
and related to those, weight matrices

and sequence logos, which have to do

Page ￼ of ￼27 29

• The focus is sequence-based CMB
– i.e. methods (& models) for obtaining & analyzing the

information encoded in the genome
• We emphasize the underlying biology
• Simple / interpretable computational models are

favored
• Proofs are often only intuitive sketches, omitting

details

32

This course

Main topics
• Suffix arrays (& hash tables) for finding exact matches
• Background sequence models
• Site models, weight matrices & sequence logos
• Highest weight paths on weighted directed acyclic

graphs: dynamic programming algorithm
• Finding non-background-like regions (“HMMs lite”)
• Edit graphs & gapped-alignment algorithms
• Hidden Markov models and applications

– Parsing genomes (into sites & non-sites)
– Finding conserved regions

• Simple molecular evolution models
33

 This course Lecture 1: Overviews Phil Green

with comparing two models, namely site models and background models. 	

Then I want to talk about dynamic programming, which is sometimes called the
"Fundamental algorithm of computational molecular biology” because it comes up in many
different contexts. I'm going to present this algorithm in the context of finding highest
weight paths on weighted directed acyclic graphs, for two reasons: First, I find it very
helpful to have the concrete picture of a graph for understanding how the algorithm works.
Second, in the applications we want to make of this algorithm in computational biology,
there nearly always is an associated graph for which highest weight paths or related
constructions correspond exactly to what you want to compute. 	

Then I'll discuss the problem of finding sequence regions which compositionally don't look
like the background. I call this 'HMMs lite' because the ideas are closely related to what
comes up in 2-state hidden Markov models. 	

Then I'll talk about gapped-alignment algorithms. The weighted directed acyclic graph
that's associated to these is called an edit graph, and the Smith-Waterman algorithm is just
dynamic programming to find a highest weight path on this graph. We'll talk about those
more generally for aligning multiple sequences. 	

Then we'll get to hidden Markov models and some of their applications. In particular, HMMs
are a good way of parsing genomes into sites and background. HMMs greatly generalize site
models and background models, which you can think of as corresponding to different
states or sets of states within a genomic HMM. 	

And finally finding conserved regions within alignments. PhastCons (which I showed you a
slide from earlier) uses what's called a phyloHMM, so we'll talk about those. And in the
context of that I'll talk about simple molecular evolution models, because you need those in
phyloHMMs. There's a lot more to say about molecular evolution models that I won't get
into. I'll just give you a simple idea of how to do some of the basic calculations.	

Things we don't cover: 	

Although HMMs can be used to find
new site motifs, there are other
approaches that can be more
powerful. 	

Deeper discussion of sequence
evolution models. 	

We don't talk about statistical
genetics, so we don't tell you how to
do a GWAS, for example. 	

 We don't talk about deep neural nets
or other complex machine-learning

models (beyond HMMs). 	

Page ￼ of ￼28 29

• Other motif-finding methods
• Sequence evolution models (in depth)
• Statistical genetics
• Deep neural nets & other complex machine-

learning models
• ‘Non-linear’ (non-sequence based) computational

biology, such as:
– Most proteomics, metabolic & signalling pathways,

models for interacting molecules …
(See Genome 541, & courses in CSE, Stat, Biostat)

34

We do not cover:

 This course Lecture 1: Overviews Phil Green

You could argue that all of the above are relevant in interpreting genomes, so they're part of
'linear' computational molecular biology. So we don’t cover all of linear CMB. Nor do we
cover 'non-linear' computational biology, which goes beyond genome sequences. For
example, modelling the 3D structure of a protein, metabolic and signalling pathways,
models for interacting molecules within a cell. 	

Many of these topics are covered in other UW courses. In Genome 541, the sequel to this
course, the content varies from year-to-year, but in the past has often covered some of these
topics; also courses in computer science, statistics and biostatistics. 	

That concludes this overview lecture. In the next lecture we'll discuss algorithms, and
specifically a clever one called the suffix array algorithm which you'll need to implement in
the first homework assignment. 	

Page ￼ of ￼29 29

